HAETAE: Hyperball bimodal modulation rejection signature scheme

Jung Hee Cheon, Hyeongmin Choe, Julien Devevey, Tim G"uneysu, Dongyeon Hong, Markus Krausz, Georg Land, Junbum Shin, Damien Stehle, and MinJune Yi

1 Seoul National University
\{jhcheon, sixta1528, yiminjune\}@snu.ac.kr
2 CryptoLab Inc.
\{decenthong93, junbum.shin, damien.stehle\}@cryptolab.co.kr
3 \'{E}cole Normale Supérieure de Lyon
\{julien.devevey, damien.stehle\}@ens-lyon.fr
4 Ruhr Universit"at Bochum
\{tim.gueneysu, markus.krausz, georg.land\}@rub.de

Abstract. We present HAETAE, a new lattice-based signature scheme for shorter signatures, which we are submitting to the Korean Post-Quantum Cryptography Competition for Korean standards. While based on the Fiat-Shamir with Aborts paradigm like the NIST-selected Dilithium signature scheme, our design choices target an improved complexity/compactness compromise that is highly relevant for many space-limited scenarios such as DNSSEC. We primarily focus on reducing signature and verification key sizes so that signatures fit into one TCP or UDP datagram while preserving a high level of security against a variety of attacks. For the same level of security, our scheme has signature and verification key sizes that are up to 40\% smaller and 20\% smaller, respectively, compared to Dilithium. Although this compactness comes at the cost of slightly more complex operations such as hyperball sampling, we expect optimized versions to run nearly as fast as Dilithium. From an implementation point of view, most operations of HAETAE are relatively simple, enabling straightforward constant-time implementations and side-channel masking.

Keywords: Lattice Cryptography · Post-Quantum Cryptography · Digital Signatures.

* This work is submitted to the ‘Korean Post-Quantum Cryptography Competition’ (www.kpqc.or.kr).
Changelog

May 2, 2023 First, all the missing parts in the first round submission [CCD+22] are included in the reference code, which can be found on the team HAETAÉ website: https://kpqc.cryptolab.co.kr. In the first round submission, the rANS encoding of the signature and the rejection sampling for secret keys were explained in the document but not in the reference code. We implement the rANS encoding for z_1 and additionally apply it to the hint vector (h) compression along with slightly modified HighBits and LowBits algorithms. We implemented the rejection algorithm for the secret key rejection but with a new rejection condition. The new condition reduces the magnitude of the secret key when multiplied by the challenge, hence the SIS bound. As a result, we update the signature sizes to the actual sizes with the encodings.

Second, we remove all the algorithms using floating-point arithmetic. The continuous Gaussian sampling, required for the continuous hyperball uniform sampling, is implemented in fixed-point arithmetic by discretizing the hyperball with an appropriate scale factor. Based on this, we further make the reference implementation to be constant-time; that is, the execution time for the signing is independent of the secret key.

Third, we introduce a verification key truncation algorithm which is adopted from Dilithium. This is applied to the first two parameters sets HAETAÉ-120 and HAETAÉ-180.

We change the parameter set by considering all the above changes, which give a trade-off between the sizes and speed.

Lastly, we change our security proof to rely on the analysis of [DFPS23] since the analysis of [KLS18] is flawed, as pointed out in [DFPS23] and [BBD+23].

1 Introduction

We introduce HAETAÉ, a new post-quantum digital signature scheme, whose security is based on the hardness of the module versions of the lattice problems LWE and SIS [BGV12, LS15]. The scheme design follows the “Fiat-Shamir with Aborts” paradigm [Lyu09, Lyu12], which relies on rejection sampling: rejection sampling is used to transform a signature trial whose distribution depends on sensitive information, into a signature whose distribution can be publicly simulated. Our scheme is in part inspired from CRYSTALS-Dilithium [DKL+18], a post-quantum “Fiat-Shamir with Aborts” signature scheme which was selected for standardization by the American National Institute of Standards and Technology (NIST). HAETAÉ differs from Dilithium in two major aspects: (i) we use a bimodal distribution for the rejection sampling, like in the BLISS signature scheme [DDLL13], instead of a “unimodal” distribution like Dilithium, (ii) we sample from and reject to hyperball uniform distributions, instead of discrete

5 The haetae is a mythical Korean lion-like creature with the innate ability to distinguish right from wrong.
hypercube uniform distributions. This last aspect also departs from BLISS, which relies on discrete Gaussian distributions, and follows a suggestion from [DFPS22], which studied rejection sampling in lattice-based signatures following the “Fiat-Shamir with Aborts” paradigm.

1.1 Design rationale

A brief recap on Fiat-Shamir with Aborts. The Fiat-Shamir with Aborts paradigm was introduced in lattice-based cryptography in [Lyu09, Lyu12]. The verification key is a pair of matrices \((A, T = AS \mod q)\), where \(A\) is a uniform matrix modulo some integer \(q\) and \(S\) is a small-magnitude matrix that makes up the secret key. A signature for a message \(M\) is comprised of an integer vector \(z\) of the form \(y + Sc\), for some random small-magnitude \(y\) and some small-magnitude challenge \(c = H(Ay \mod q, M)\). Rejection sampling is then used to ensure that the distribution of the signature becomes independent from the secret key. Finally, the verification algorithm checks that the vector \(z\) is short and that \(c = H(Az - Tc \mod q, M)\).

Improving compactness. As analyzed in [DFPS22], the choice of the distributions to sample from and reject to has a major impact on the signature size. Dilithium relies on discrete uniform distributions in hypercubes, which makes the scheme easier to implement. However, such distributions are far from optimal in terms of resulting signature sizes. We choose a different trade-off: by losing a little on ease of implementation, we obtain more compact signatures.

Uniform distributions in hyperballs. A possibility would be to consider Gaussian distributions, which are superior to uniform distributions in hypercubes, in terms of resulting signature compactness (see, e.g., [DFPS22]). However, this choice has two downsides. First, the rejection step involves the computation of a transcendental function on an input that depends on the secret key. This is cumbersome to implement and sensitive to side-channel attacks [EFGT17]. Second, since the final signature follows a Gaussian distribution there is a nonzero probability that the final signature is too large and does not pass the verification. The signer must realise that and reject the signature, making the expected number of rejects slightly grow in practice. Uniform distributions over hyperballs have been put forward in [DFPS22] as an alternative choice of distributions leading to signatures with compactness between those obtained with Gaussians and those obtained with hypercube uniforms. Compared to Gaussians, they do not suffer from the afore-mentioned downsides: the rejection step is simply checking whether Euclidean norms are sufficiently small; and as there is no tail, there is no need for an extra rejection step to ensure that verification will pass. HAETAE showcases that this provides an interesting simplicity/compactness compromise.

Bimodal distributions. A modification of Lyubashevsky’s signatures [Lyu09, Lyu12] introduced in [DDLL13] allows for the use of bimodal distributions in the
signature generation. The signature is now of the form $y + (-1)^b Sc$, where y is sampled from a fixed distribution and $b \in \{0, 1\}$ is sampled uniformly. The signature is then rejected to a given secret-independent target distribution. To make sure that the verification test passes, computations are performed modulo $2q$ and key generation forces the equality $AS = qId$. It turns out that this modification can lead to more compact signatures than the unimodal setup. In [DDLL13], the authors relied on discrete Gaussian distributions. We instead use uniform distributions over hyperballs: like for Gaussians, switching from unimodal to bimodal for hyperball-uniforms leads to more compact signatures.

Flexible design by working with modules. The original design for BLISS [DDLL13] relies on Ring-LWE and Ring-SIS, and a variant of the key generation algorithm relied on ratios of polynomials, à la NTRU. This setup forces to choose a working polynomial ring $\mathcal{R} = \mathbb{Z}[x]/(x^{256} + 1)$ across all security levels. In our instantiations, we target the NIST PQC security levels 2, 3 and 5. Varying the security and updating the parameters is easily achievable and we provide a security estimator that is able to help one reach a given target security.

A compact verification key. The flexibility provided by modules allows us to reduce the verification key size. Instead of taking the challenge c as a vector over \mathcal{R}, we choose it in \mathcal{R}: the main condition on the challenge is that it has high min-entropy, which is already the case for binary vectors over \mathcal{R}. As a result, the secret S can be chosen as a vector over \mathcal{R} rather than a matrix. The key-pair equation $AS = qId$ then becomes $As = qj$, where j is the vector starting with 1 and then continuing with 0's. To further compress the verification key, we use verification key truncation adopted from Dilithium by taking into account the residue modulo 2. Our key generation algorithm just creates an MLWE sample $(A_{\text{gen}}, b - a = A_{\text{gen}}s_{\text{gen}} + e_{\text{gen}})$ modulo q, where a is uniform random over \mathcal{R}^k_q. By truncating b as $b = b_1 + b_0$, we define a $k \times (k + \ell)$ matrix A as $A = (-2(a - b_1) + qj|A_{\text{gen}}| 2Id_k) \mod 2q$. The key-pair equation is satisfied for $s = (1|s_{\text{gen}}| e_{\text{gen}} - b_0)$. The verification key consists of (A_{gen}, a, b_1). As $(a|A_{\text{gen}})$ is uniformly distributed, we can generate it from a seed using an extendable output function, and the verification key is reduced to the seed and the vector b_1. If we had kept the original key-pair equation $AS = qId$, then the appropriately modified variant of our key-generation algorithm would have led to a verification key that is a matrix (with a seed) rather than a vector (with a seed).

Compression techniques to lower the signature size. We use two techniques to compress the signatures. First, as the verification key A is in (almost)-HNF, we can use the Bai-Galbraith technique [BG14]. Namely, the second part of the signature, which is multiplied by $2Id$ in the challenge computation and verification algorithm, can be aggressively compressed by cutting its low
bits. This requires in turn modifying the computation of the challenge c and the
verification algorithm, in order to account for this precision loss. Usually, this is
done by keeping only the high bits of Ay in the computation of the challenge.
However, as we multiply everything by 2, we do not keep the lowest bit of those
high bits and keep the (overall) least significant bit instead. As in Dilithium, our
decomposition of bits technique is a Euclidean division with a centered remainder,
and we choose a representative range for modular integers that starts slightly
below zero to further reduce the support of the high bits. The second compression
technique, suggested in [ETWY22] in the context of lattice-based hash-and-sign
signatures, concerns the choice of the binary representation of the signature. As
the largest part of it consists in a vector that is far from being uniform, we can
choose some entropic coding to obtain a signature size close to its entropy. In
particular, as in [ETWY22], we choose the efficient range Asymmetric Numeral
System to encode our signature, as it allows us to encode the whole signature
and not lose a fraction of a bit per vector coordinate, like with Huffman coding.
We can further apply the two techniques to the hint vector h, which is also a
part of the signature, to reduce the signature sizes.

Efficient choice of modulus. We choose the prime q to be a good prime in
the sense that the ring operations can be implemented efficiently and that the
decomposition of bits algorithms, are correctly operated. For ring operations, we
use the Number Theoretic Transform (NTT) with a fully splitting polynomial ring.
The polynomial ring \mathbb{R} fully splits modulo q when the multiplicative group \mathbb{Z}_q^*
has an element of order 512, or equivalently when $q = 1 \mod 512$. We choose
$q = 64513$, which indeed satisfies this property. Interestingly, it fits in 16 bits,
which allows dense storing on embedded devices. Furthermore, it is close to the
next power of two, which is convenient for the sampling of uniform integers
modulo q.

Fixed-point algorithm for hyperball sampling. Unlike uniform Gaussian
sampling or uniform hypercube sampling, uniform hyperball sampling has not
been considered in the cryptographic protocols before the suggestion of [DFPS22].
To narrow the gap between the hyperball uniforms sampled in the real and
the ideal world, we discretize the hyperball and bound the numerical error and
their effect by analyzing their propagation. This leads to a fixed-point hyperball
sampling algorithm and, therefore, the fixed-point implementation of the whole
signing process.

Deterministic and randomized version. HAETAE can be set in a determin-
istic or randomized mode. We focus on the deterministic version, but we also
give the randomized version. Note that in the randomized version, a significant
part of the signing algorithm can be executed off-line as it does not depend on
the message.

We give estimated security as well as sizes for our parameter sets in Table 1.
The full parameters sets can be found in Section 3.5. The security of our signature
is stated in terms of Core-SVP hardness, as introduced in [ADPS16]. We target the core-SVP classical hardness of the known attacks against the three proposed instantiations of HAETAE to be at least 120, 180 and 260, respectively. The numbers between parentheses refer to the strong unforgeability in the case of the randomized version of the signature scheme (for the deterministic version, strong and weak unforgeability are the same). The parameter M refers to the number of average rejections during signing. The KeyRate is the key rejection rate in the key generation algorithm. The parameter η refers to the infinity norm of the secret key s_{gen}. The parameter τ refers to the Hamming weight of the binary challenge $c \in \mathcal{R}$. The parameter d refers to the bit truncated from the verification key. The sizes are given in bytes. For the signature sizes, we give the average signature sizes when using rANS coding.

<table>
<thead>
<tr>
<th>Parameter set</th>
<th>NIST Security level</th>
<th>HAETAE-120</th>
<th>HAETAE-180</th>
<th>HAETAE-260</th>
</tr>
</thead>
<tbody>
<tr>
<td>q</td>
<td>64513</td>
<td>64513</td>
<td>64513</td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>6.0</td>
<td>5.0</td>
<td>6.0</td>
<td></td>
</tr>
<tr>
<td>Key Rate (k, ℓ)</td>
<td>0.1</td>
<td>0.25</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>(k, ℓ)</td>
<td>(2,4)</td>
<td>(3,6)</td>
<td>(4,7)</td>
<td></td>
</tr>
<tr>
<td>η</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>τ</td>
<td>58</td>
<td>80</td>
<td>128</td>
<td></td>
</tr>
<tr>
<td>α_h</td>
<td>512</td>
<td>512</td>
<td>256</td>
<td></td>
</tr>
<tr>
<td>d</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Forgery b</td>
<td>409 (333)</td>
<td>617 (512)</td>
<td>878 (735)</td>
<td></td>
</tr>
<tr>
<td>Classical hardness</td>
<td>119 (97)</td>
<td>180 (149)</td>
<td>256 (214)</td>
<td></td>
</tr>
<tr>
<td>Quantum hardness</td>
<td>105 (85)</td>
<td>158 (131)</td>
<td>225 (188)</td>
<td></td>
</tr>
<tr>
<td>Key-Recovery b</td>
<td>428</td>
<td>810</td>
<td>988</td>
<td></td>
</tr>
<tr>
<td>Classical hardness</td>
<td>125</td>
<td>236</td>
<td>288</td>
<td></td>
</tr>
<tr>
<td>Quantum hardness</td>
<td>109</td>
<td>208</td>
<td>253</td>
<td></td>
</tr>
<tr>
<td>Signature size</td>
<td>1463</td>
<td>2337</td>
<td>2908</td>
<td></td>
</tr>
<tr>
<td>Public key size</td>
<td>992</td>
<td>1472</td>
<td>2080</td>
<td></td>
</tr>
<tr>
<td>Sum</td>
<td>2455</td>
<td>3809</td>
<td>4988</td>
<td></td>
</tr>
<tr>
<td>Private key size</td>
<td>1376</td>
<td>2080</td>
<td>2720</td>
<td></td>
</tr>
</tbody>
</table>

Table 1: HAETAE parameters sets. Hardness is measured with the Core-SVP methodology.

1.2 Advantages and limitations

Advantages

– Our scheme relies on the difficulty of hard lattice problems, which have been well-studied for a long time.
Signature sizes are 30% to 40% smaller than those of Dilithium at comparable security levels, and verification keys are 20% to 25% smaller.

Implementation-wise, while our design rationale departs from Dilithium’s, the scheme remains implementation-friendly. In particular,

- the rejection step only involves computations of Euclidean norms,
- the whole signing process can be implemented with fixed-point arithmetic
- a significant message-independent part of signing can be performed “off-line”, for the randomized version of the scheme.

Comparison with Hash and Sign lattice signatures. In terms of ease of implementation, our scheme favorably compares to lattice signatures based on the hash and sign paradigm such as Falcon [FHK+17] and Mitaka [EFG+22]. HAETAE, Falcon and Mitaka all three rely on some form of Gaussian sampling, which are typically difficult to implement and protect against side-channel attacks. Falcon makes sequential calls to a Gaussian sampler over \mathbb{Z} with arbitrary centers. Mitaka also relies on an integer Gaussian sampler with arbitrary centers, but the calls to it can be massively parallelized. It also uses a continuous Gaussian sampler, which is arguably simpler. HAETAE, however, only relies on a (zero-centered) continuous Gaussian sampler, used to sample uniformly in hyperballs. The calls to it can also be massively parallelized. This difference makes HAETAE possible to have a fixed-point signing algorithm and easier maskings. Further, in the randomized version of the signature scheme, these samples can be computed off-line as they are independent from the message to be signed. The on-line tasks are far simpler than those of Falcon and Mitaka. Finally, we note that key-generation is much simpler for HAETAE than in Falcon and Mitaka.

Limitations

- The key generation algorithm restarts if the secret key does not satisfy the key rejection condition. This makes the key generation algorithm of HAETAE slower than Dilithium’s.

Comparison with Hash and Sign signatures. While HAETAE is simpler from an implementation perspective, its verification key and signature sizes are larger than Falcon’s and Mitaka’s.
2 Preliminaries

2.1 Notations

Matrices are denoted in bold font and upper case letters (e.g., A), while vectors are denoted in bold font and lowercase letters (e.g., y or z_1). The i-th component of a vector is denoted with subscript i (e.g., y_i for the i-th component of y).

Every vector is a column vector. We denote concatenation between vectors by putting the rows below as (u, v) and the columns on the right as $(u|v)$. We naturally extend the latter notation to concatenations between matrices and vectors (e.g., $(A|b)$ or $(A|B)$).

We define a polynomial ring $R = \mathbb{Z}[x]/(x^n + 1)$ where n is a power of 2 integer and for any positive integer q the quotient ring $R_q = \mathbb{Z}[x]/(q, x^n + 1) = \mathbb{Z}_q[x]/(x^n + 1)$. We abuse notations and identify R with the set of elements in R with binary coefficients. We also define a polynomial ring over real numbers $\mathbb{R}[x]/(x^n + 1)$. For an integer η, we let the set of polynomials of degree less than n with coefficients in $[-\eta, \eta] \cap \mathbb{Z}$ be denoted by S_η. Given $y = (\sum_{0 \leq i \leq n} y_i x^i, \cdots, \sum_{0 \leq i < n} y_{nk-n+i} x^i)^\top \in \mathbb{R}^k$ (or \mathbb{R}^k_η), we define its ℓ_2-norm as the ℓ_2-norm of the corresponding “flattened” vector $\|y\|_2 = \| (y_0, \cdots, y_{nk-1}) \|_2$.

Let $\mathcal{B}_{R,m}(r, c) = \{ x \in \mathbb{R}^m : \| x - c \|_2 \leq r \}$ denote the continuous hyperball with center $c \in \mathbb{R}^m$ and radius $r > 0$ in dimension $m > 0$. When $c = 0$, we omit the center. Let $\mathcal{B}_{(1/N)R,m}(r, c) = (1/N)\mathbb{R}^m \cap \mathcal{B}_{R,m}(r, c)$ denote the discretized hyperball with radius $r > 0$ and center $c \in \mathbb{R}^m$ in dimension $m > 0$ with respect to a positive integer N. When $c = 0$, we omit it. Given a measurable set $X \subseteq \mathbb{R}^m$ of finite volume, we let $U(X)$ denote the continuous uniform distribution over X. It admits $x \mapsto \chi_X(x)/\text{Vol}(X)$ as a probability density, where χ_X is the indicator function of X and $\text{Vol}(X)$ is the volume of the set X. For the normal distribution over \mathbb{R} centered at μ with standard deviation σ, we use the notation $\mathcal{N}(\mu, \sigma)$.

For a positive integer α, we define $r \bmod \alpha$ as the unique integer r' in the range $[-\alpha/2, \alpha/2)$ satisfying the relation $r = r' \bmod \alpha$. We also define $r \bmod^\top \alpha$ as the unique integer r' in the range $[0, \alpha)$ satisfying $r = r' \bmod \alpha$. We denote the least significant bit of an integer r with $\text{LSB}(r)$. We naturally extend this to integer polynomials and vectors of integer polynomials, by applying it component-wise.

2.2 Lattice assumptions

We first recall the well-known lattice assumptions MLWE and MSIS on algebraic lattices.

Definition 1 (Decision-MLWE$_{q,k,\ell,\eta}$). For positive integers q, k, ℓ, η and the dimension n of R, we say that the advantage of an adversary A solving the decision-MLWE$_{q,k,\ell,\eta}$ problem is

$$\text{Adv}^{\text{MLWE}}_{n,q,k,\ell,\eta}(A) = \left| \Pr \left[b = 1 \mid A \leftarrow \mathcal{R}_q^{k \times \ell}; b \leftarrow \mathcal{R}_q^k; b \leftarrow A(A, b) \right] - \Pr \left[b = 1 \mid A \leftarrow \mathcal{R}_q^{k \times \ell}; (s_1, s_2) \leftarrow S_\eta^k \times S_\eta^k; b \leftarrow A(A, As_1 + s_2) \right] \right|. $$
Definition 2 (Search-MSIS\(n,q,k,ℓ,β\)). For positive integers \(q,k,ℓ\), a positive real number \(β\) and the dimension \(n\) of \(R\), we say that the advantage of an adversary \(A\) solving the search-MSIS\(n,q,k,ℓ,β\) problem is

\[
\text{Adv}^{\text{MSIS}}_{n,q,k,ℓ,β}(A) = \Pr \left[0 < \|y\|_2 < β \land (A \mid \text{Id}_k) \cdot y = 0 \mod q \mid A \leftarrow R_q^{k \times ℓ}; y \leftarrow A(A) \right].
\]

2.3 Bimodal hyperball rejection sampling

Recently, Devevey et al. [DFPS22] conducted a study of rejection sampling in the context of lattice-based Fiat-Shamir with Aborts signatures. They observe that (continuous) uniform distributions over hyperballs can be used to obtain compact signatures, with a relatively simple rejection procedure. HAETAE uses (discretized) uniform distributions over hyperballs, in the bimodal context. The proof of the following lemma is available in Appendix C.

Lemma 1 (Bimodal Hyperball Rejection Sampling). Let \(n\) be the degree of \(\mathcal{R}\), \(c > 1\), \(r,t,m > 0\), and \(r' \geq \sqrt{r^2 + t^2}\). Define \(M = 2(r'/r)^{mn}\) and set

\[
N \geq \frac{1}{c^{l/(mn)} - 1} \sqrt{\frac{mn}{2}} \left(\frac{c^{l/(mn)}}{r} + \frac{1}{r'} \right).
\]

Let \(v \in R^m \cap B(1/N)_{R,m}(t)\). Let \(p : \mathbb{R}^m \rightarrow \{0, 1/2, 1\}\) be defined as follows

\[
p(z) = \begin{cases}
0 & \text{if } \|z\| \geq r, \\
1/2 & \text{else if } \|z - v\| < r' \land \|z + v\| < r', \\
1 & \text{otherwise}.
\end{cases}
\]

Then there exists \(M' \leq cM\) such that the output distributions of the two algorithms from Figure 2 are identical.

![Fig. 1: The HAETAE eyes](image-url)
radius r. We sample a vector z uniformly inside one of the black circles (with probability $1/2$ for each) and keep z with $p(z) = 1/2$ if z lies in the blue zone, with probability $p(z) = 1$ if it lies inside the pink circle but not in the blue zone, and with probability $p(z) = 0$ everywhere else.

\begin{verbatim}
A(v):
1: y ← U(B_{1/N} \mathbb{R}^m(r'))
2: b ← U({0, 1})
3: z ← y + (-1)^b v
4: return z with probability $p(z)$
5: else return ⊥

B:
1: z ← U(B_{1/N} \mathbb{R}^m(r))
2: return z with probability $1/M'
3: else return ⊥
\end{verbatim}

Fig. 2: Bimodal hyperball rejection sampling

As we do not know the exact value of M', we cannot use algorithm B as a signature simulator in the security proof of HAETAE. Note that in the security proofs of lattice-based Fiat-Shamir with Aborts signatures, it is required to have an efficient simulator that simulates all iterations of the signature algorithm. Hence, simply replacing B with a version that always output z does not suffice. Our proposal is to use $A(0)$ as an efficient simulator: as 0 has norm at most t for any $t > 0$, algorithm $A(0)$ has statistical distance 0 with B and thus with $A(v)$ for any v with norm $\leq t$.

2.4 Sampling in a continuous hyperball-uniform

We explain how to sample from a uniform continuous hyperball distribution. Multiple strategies exist, and the one we choose is such that a k-dimensional module sample is obtained using only $kn + 2$ one-dimensional continuous Gaussian samples:

\begin{verbatim}
y ← U(B_{R,k}(r''))
1: y_i ← N(0, 1) for $i = 0, \ldots, nk + 1$
2: $L ← \| (y_0, \ldots, y_{nk+1})^T \|_2$
3: $y ← r''/L \cdot (\sum_{i=0}^{nk} y_i x^i, \ldots, \sum_{i=0}^{nk} y_{nk+n+i} x^i)^T \in \mathbb{R}_k$
4: return y
\end{verbatim}

Fig. 3: Continuous hyperball uniform sampling

Lemma 2 ([VGS17]). The distribution of the output of the algorithm in Figure 3 is $U(B_{R,k}(r''))$.
2.5 Challenge sampling

The challenges we use are polynomials \(c \in \mathbb{R} \) with binary coefficients and some of them are nonzero. The challenge space has size \(\binom{n}{\tau} \) if exactly \(\tau \) coefficients are nonzero. To sample such challenges we rely on the SampleInBall algorithm from Dilithium, which we recall in Fig. 4.

SampleInBall\((\rho, \tau)\)

1: initialize \(c = c_0c_1 \ldots c_{255} = 00 \ldots 0 \)
2: For \(i = 256 - \tau \) to 255
3: \(j \leftarrow \{0, \ldots, i\} \)
4: \(c_i = c_j \)
5: \(c_j = 1 \)
6: return \(c \)

Decode\((x \in \mathbb{Z})\)

1: \(y_0 = x \)
2: \(i = 0 \)
3: while \(y_i > 0 \) do
4: \(t_{i+1} = \text{symbol}(y_i \mod 2^n) \)
5: \(y_{i+1} = \lfloor y_i/2^n \rfloor \cdot f(t_{i+1}) + (y_i \mod 2^n) - \text{CDF}(t_{i+1}) \)
6: \(i \leftarrow i + 1 \)
7: \(m = i - 1 \)
8: return \((t_m, \ldots, t_1) \in S^m\)

Fig. 4: Challenge sampling algorithm

For the highest security, however, we require 255 bits of entropy for the challenge, which cannot be reached with \(\binom{256}{\tau} \). To achieve it, we replace the challenge sampling for the parameter set with the following. Given a 256-bits hash \(w_0 \ldots w_{255} \) with Hamming weight \(w \), do the following. If \(w < 128 \), return \(\sum_{i=0}^{255} w_i x^i \). If \(w = 128 \), return \(\sum_{i=0}^{255} w_i \otimes w_0 x^i \). Otherwise, return \(\sum_{i=0}^{255} w_i \otimes 1x^i \). Exactly half of all binary polynomials are reachable this way, which means that the challenge set has size \(2^{255} \) as desired.

2.6 High and low bits

In our scheme, the signature is comprised of a vector \(z \), which we split in two, and a polynomial \(c \). The upper part of \(z \) is split between its high and low bits, and the high bits are compressed. The lower part of \(z \) is not sent, and we instead send a so-called hint. Our technique may be reminiscent of the one from Dilithium [DKL+18], which shares the high-level idea. We first recall the Euclidean division with a centered remainder.
Lemma 3. Let \(a \geq 0 \) and \(b > 0 \). It holds that
\[
a = \left\lfloor \frac{a + b/2}{b} \right\rfloor \cdot b + (a \mod b),
\]
and this writing as \(a = bq + r \) with \(r \in [-b/2, b/2) \) is unique.

We define our base decomposition function.

Definition 3 (High and low bits). Let \(r \in \mathbb{Z} \) and \(\alpha \) be a power of two. Successively define
\[
r_1 = \left\lfloor \frac{(r + \alpha/2)/\alpha}{\alpha} \right\rfloor \cdot \alpha + (r \mod \alpha),
\]
Finally, define the tuple:
\[
(\text{LowBits}(r, \alpha), \text{HighBits}(r, \alpha)) = (r_0, r_1).
\]

We extend these definitions to vectors by applying them component-wise. We state that this decomposition lets us recover the original element and bound the components of the decomposition.

Lemma 4. Let \(\alpha \) be a power of two. Let \(q > 2 \) be a prime with \(\alpha | 2(q - 1) \) and \(r \in \mathbb{Z} \). Then it holds that
\[
r = \alpha \cdot \text{HighBits}(r, \alpha) + \text{LowBits}(r, \alpha),
\]
\[
\text{LowBits}(r, \alpha) \in [-\alpha/2, \alpha/2),
\]
\[
r \in [0, 2q - 1] \implies \text{HighBits}(r, \alpha) \in [0, (2q - 1)/\alpha].
\]

Proof. By Lemma 3, there exists a unique representation
\[
r = \left\lfloor \frac{(r + \alpha/2)/\alpha}{\alpha} \right\rfloor \alpha + (r \mod \alpha).
\]
By identifying \(\text{HighBits}(r, \alpha) \) and \(\text{LowBits}(r, \alpha) \) in the above equation, we obtain the first result.

Next, by definition of \(\mod \), we have that \(r' \in [-\alpha/2, \alpha/2) \).

For the second range, since \(\left\lfloor (r + \alpha/2)/\alpha \right\rfloor \) is a non-decreasing function, it suffices to show that \(\left\lceil (2q - 1 + \alpha/2)/\alpha \right\rceil \leq \left\lceil (2q - 1)/\alpha \right\rceil \). By assumption on \(q \), we have \((2q - 1 + \alpha/2) \leq \left\lceil (2q - 1)/\alpha \right\rceil + \alpha - 1 \). Dividing by \(\alpha \) and taking the floor yields the result.

\[\Box\]

We define \(\text{HighBits}^{s1}(r) = \text{HighBits}(r, 256), \text{LowBits}^{s1}(r) = \text{LowBits}(r, 256) \)
and \(\text{HighBits}^{s8}(r) = \text{HighBits}(r, d), \text{LowBits}^{s8}(r) = \text{LowBits}(r, d) \).

High and low bits for hint In order to produce the hint that we send instead of the lower part of \(z \), we could use the previous bit decomposition. However, as noted in [DKL+18, Appendix B] in a preliminary version, a slight modification allows to further reduce the entropy of the hint.

The idea is to pack the high bits in the range \([0, 2(q - 1)/\alpha_h)\). This is possible if we use the range \([-\alpha_h/2 - 2, 0)\) to represent the integers that are close to \(2q - 1 \).
Definition 4 (High and low bits for hint). Let $r \in \mathbb{Z}$. Let q be a prime and $\alpha_h | 2(q-1)$ be a power of two. Let $m = 2(q-1)/\alpha_h$ and

$$r_1 = \text{HighBits}(r \mod^+ 2q, \alpha_h) \quad \text{and} \quad r_0 = \text{LowBits}(r \mod^+ 2q, \alpha_h).$$

If $r_1 = m$, let $(r'_0, r'_1) = (r_0 - 2, 0)$. Else, $(r'_0, r'_1) = (r_0, r_1)$. We define:

$$(\text{LowBits}^h(r), \text{HighBits}^h(r)) = (r'_0, r'_1).$$

As before, we extend these definitions to vectors by applying them component-wise. We state that this decomposition lets us recover the original element and bound the decomposition components.

Lemma 5. Let $r \in \mathbb{Z}$. Let q be a prime, $\alpha_h | 2(q-1)$ be a power of two and define $m = 2(q-1)/\alpha_h$. It holds that

$$r = \alpha_h \cdot \text{HighBits}^h(r) + \text{LowBits}^h(r) \mod 2q,$$

$$\text{LowBits}^h(r) \in [-\alpha_h/2 - 2, \alpha_h/2),$$

$$\text{HighBits}^h(r) \in [0, m - 1].$$

Proof. Let $r \in [0, 2q - 1]$. Let r_0, r_1, r'_0, and r'_1 defined as in Definition 4. The equality $r'_0 + r'_1 \cdot \alpha_h = r_0 + r_1 \cdot \alpha_h \mod 2q$ holds vacuously if $r'_0 = r_0$ and $r'_1 = r_1$.

If not, then $r'_0 = r_0 - 2$ and $r'_1 = r_1 - 2(q-1)/\alpha_h$ and $r'_0 + r'_1 \alpha_h = r_0 + r_1 \alpha_h - 2q$. By Lemma 4, we get the first equality.

The second property stems from the second property in Lemma 4. The modifications to r_0 make r'_0 lie in the range $[-\alpha_h/2 - 2, \alpha_h/2)$.

The last property stems from the third property in Lemma 4 and the fact that if $r_1 = m$, then we have $r'_1 = 0$.

\[\square\]
3 Specification

3.1 Key generation

The bimodal rejection sampling relies on having a key pair \((A, s) \in \mathcal{R}_p^{k \times (k+\ell)} \times \mathcal{R}_p^{k+\ell}\) such that \(As = -As \mod p\). To generate such a pair, following [DDLL13], we choose \(p = 2q\) and aim at \(As = qj \mod 2q\) for \(j = (1, 0, \ldots, 0)^T\).

Key generation and encoding To build a key pair, we start from an MLWE sample \(b - a = A_0s_0 + e_0 \mod q\), where \(A_0 \leftarrow U(\mathcal{R}_q^{k \times (\ell-1)})\), \(a \leftarrow U(\mathcal{R}_q^k)\) and \((s_0, e_0) \leftarrow U(S_{\ell-1} \times S_\ell^k)\). For any \(b = b_1 + b_2\), we define \(A = (2(a - b_1) + qj|2A_0|2I_k)\) as well as \(s = (1|s_0|(e_0 - b_0))\). One sees that \(As = qj \mod 2q\). In practice, the verification key is then comprised of \(b_1\) and the seed that allows generating \(A_0\) and \(a\). The secret key is the seed used to generate \(s\) and \((A_0, a)\).

It remains to choose the decomposition of \(b\), that we see as an \(nk\)-dimensional vector with coordinates in \([0, q - 1]\). We choose \(b_0\) with coordinates in \([-1, 0, 1]\) such that if a coordinate of \(b\) is odd, then it is rounded to the nearest multiple of 4. We can then write \(b = b_0 + 2b_1\), where \(b_1\) is encoded using \(\lceil \log_2(q) - 1 \rceil\) bits per coordinate. This is computed coordinate-wise with \(b_0 = (-1)^{|b|/2} \mod 2^{|b|} \mod 2\), i.e. one less bit than \(b\). In all of the following, we let \((\text{LowBits}^k(b), \text{HighBits}^k(b))\) denote \((b_0, b_1)\). When \(b\) is uniform, we notice that the coordinates of \(b_0\) roughly follow a (centered) binomial law with parameters \((2, 1/2)\), which experimentally leads to smaller choices for \(\beta\), which we discuss and introduce now.

Rejection sampling on the key A critical step of our scheme is bounding \(\|sc\|_2\), where \(s\) is generated as before and \(c \in \mathcal{R}\) is a polynomial with coefficients in \([0, 1]\) and has less than or equal to \(\tau\) nonzero coefficients. The lower this bound is, the smaller the signature is, which in turn leads to harder forging. In the key generation algorithm, we apply the following rejection condition for some heuristic value \(\beta\):

\[
\tau \cdot \sum_{i=1}^{m} \max_j \|s(\omega_j)\|_2^2 + r \cdot \max_j \|s(\omega_j)\|_2^2 \leq \frac{n\beta^2}{\tau},
\]

where \(m = |n/\tau|\) and \(r = n \mod \tau\). We argue that the left hand side is a bound on \(\frac{2}{\tau} \cdot \|sc\|_2^2\) and that this condition leads to asserting \(\|sc\|_2 \leq \beta\).

Lemma 6. For a binary challenge \(c \in \{0, 1\}^n\) with hamming weight \(\tau\) and a secret \(s \in S_{\ell-1}^k \times S_\ell^k\), \(n\|cs\|_2^2\) is bounded by

\[
\tau^2 \cdot \sum_{i=1}^{m} \max_j \|s(\omega_j)\|_2^2 + r \cdot \max_j \|s(\omega_j)\|_2^2,
\]

where \(m = |n/\tau|\) and \(r = n \mod \tau\).
Proof. We first rewrite $\|sc\|^2$ as:

$$\|sc\|^2 = \frac{1}{n} \sum_{i} |c(\omega_j)|^2 \cdot \|s(\omega_j)\|^2,$$

where $s(\omega_j) = (s_1(\omega_j), \ldots, s_{k+\ell}(\omega_j))$, and ω_j’s are the primitive 2^n-th roots of unity. For $n = m \cdot r + r$, let $m = \lfloor n/\tau \rfloor$ and $r = n \mod \tau$. Since $\sum_{j=1}^n |c(\omega_j)|^2 = n\tau$ and

$$|c(\omega_j)|^2 = |\omega_{j,1} + \cdots + \omega_{j,\tau}|^2 \leq \tau^2,$$

we can bound $\sum_{j=1}^n |c(\omega_j)|^2 \cdot \|s(\omega_j)\|^2$ by rearrangement: let $m = \lfloor n/\tau \rfloor$ be the maximum number of $|c(\omega_j)|^2$’s that can be τ^2. By sorting $\|s(\omega_j)\|$ in a decreasing order,

$$\|s(\omega_{\sigma(1)})\| \geq \|s(\omega_{\sigma(2)})\| \geq \cdots \geq \|s(\omega_{\sigma(n)})\|,$$

where σ is a permutation for the indices, we have

$$\sum_{j=1}^n |c(\omega_j)|^2 \cdot \|s(\omega_j)\|^2 \leq \sum_{j=1}^m \|s(\omega_{\sigma(j)})\|^2.\|s(\omega_{\sigma(j)})\|^2 + \sum_{j=m+1}^n \|s(\omega_{\sigma(j)})\|^2.\|s(\omega_{\sigma(j)})\|^2.$$

Then it reaches the maximum when the m largest $\|s(\omega_j)\|_2$’s are multiplied with the m number of τ^2’s. That is,

$$\sum_{j=1}^n |c(\omega_j)|^2 \cdot \|s(\omega_j)\|^2 \leq \sum_{j=1}^m \tau^2 \cdot \|s(\omega_{\sigma(j)})\|^2 + \left(\sum_{j=1}^m |c(\omega_j)|^2 - m\tau^2\right) \cdot \|s(\omega_{\sigma(j)})\|^2$$

$$= \tau^2 \cdot \sum_{j=1}^m \|s(\omega_{\sigma(j)})\|^2 + r \cdot \tau \cdot \|s(\omega_{\sigma(j)})\|^2.$$

\[\square\]

3.2 Discrete hyperball sampling

Lattice cryptography often relies on Gaussian distributions. As we depart from this choice; we explain how to sample uniformly on a discrete hyperball, i.e., how we generate the sample \mathbf{y} from Figure 2 with linked to continuous hyperball uniform sampling in Figure 3.

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mathbf{y} \leftarrow U(B_{1/N})$</td>
<td>$\mathbf{y} \leftarrow U(B_{R,m}(N\text{r'} + \sqrt{mn}/2))$</td>
</tr>
<tr>
<td>if $|\mathbf{y}|_2 \leq N\text{r'}$, return \mathbf{y}/N</td>
<td>else, restart</td>
</tr>
</tbody>
</table>

Fig. 5: Discrete hyperball uniform sampling
Lemma 7. Let n be the degree of R, $M_0 \geq 1$, $r', m > 0$ and set
\[
N \geq \frac{\sqrt{mn}}{2r'} \cdot \frac{M_0^{1/(mn)} + 1}{M_0^{1/(mn)} - 1}.
\]
At each iteration, the algorithm from Figure 5 succeeds with probability $\geq 1/M_0$. Moreover, the distribution of the output is $U(B(r')).$

The proof of this lemma can also be found in Appendix C.

Using Lemma 2, we can conclude that if we use the algorithms in Figures 1, 2, 3, and 5 and if we can sample from a normal distribution correctly, then the resulting distribution of z is indeed the uniform sample from the discretized hyperball. However, if we use floating-point arithmetic for the normal distribution sampling and Steps 2 and 3 introduce numerical errors. We analyze these errors and give the required precision for fixed-point Gaussian sampling algorithm to maintain provable security in Appendix D.

3.3 Signature encoding

To encode a signature, we will split some of its components into low and high bits. If we correctly choose the number of low bits, they will be distributed almost uniformly. The high bits on the other hand, will then follow a distribution with a very small variance and can be considerably compressed with a suitable encoding. While Huffman coding would be applied on each coordinate at a time, an arithmetic coding encodes the entire coordinates in a single number. In contrast to Huffman coding, arithmetic coding gets close to entropy also for alphabets, where the probabilities of the symbols are not powers of two. We recall a recent type of entropy coding, named range Asymmetric Numeral systems (rANS) [Dud13], that encodes the state in a natural number and thus allows faster implementations. As a stream variant, rANS can be implemented with finite precision integer arithmetic by using renormalization.

Furthermore, it is possible to avoid arithmetic operations altogether and realize high-speed implementations using lookup tables (tANS).

Definition 5 (Range Asymmetric Numeral System (rANS) Coding). Let $n > 0$ and $S \subseteq [0, 2^n - 1]$. Let $g : [0, 2^n - 1] \rightarrow \mathbb{Z} \cap (0, 2^n]$ such that $\sum_{x \in S} g(x) \leq 2^n$ and $g(x) = 0$ for all $x \notin S$. We define the following:

- $\text{CDF} : S \rightarrow \mathbb{Z}$, defined as $\text{CDF}(s) = \sum_{y=0}^{s-1} g(y)$.
- $\text{symbol} : \mathbb{Z} \rightarrow S$, where $\text{symbol}(y)$ is defined as $s \in S$ satisfying $\text{CDF}(s) \leq y < \text{CDF}(s + 1)$.
- $C : \mathbb{Z} \times S \rightarrow \mathbb{Z}$, defined as
\[
C(x, s) = \left\lfloor \frac{x}{g(s)} \right\rfloor \cdot 2^n + (x \mod^+ g(s)) + \text{CDF}(s).
\]

Then, we define the rANS encoding/decoding for the set S and frequency $g/2^n$ as in Figure 6.
Encode\((s_1, \ldots, s_m) \in S^m\)

1: \(x_0 = 0\)
2: \(\text{for } i = 0, \ldots, m - 1 \text{ do}\)
3: \(x_{i+1} = C(x_i, s_{i+1})\)
4: Return \(x_m\)

Decode\((x \in \mathbb{Z})\)

1: \(y_0 = x\)
2: \(i = 0\)
3: \(\text{while } y_i > 0 \text{ do}\)
4: \(t_{i+1} = \text{symbol}(y_i \mod 2^n)\)
5: \(y_{i+1} = \lfloor y_i / 2^n \rfloor \cdot g(t_{i+1}) + (y_i \mod 2^n) - \text{CDF}(t_{i+1})\)
6: \(i \leftarrow i + 1\)
7: \(m = i - 1\)
8: return \((t_m, \ldots, t_1) \in S^m\)

Fig. 6: rANS encoding and decoding procedures

Lemma 8 (Adapted from [Dud13]). The rANS coding is correct, and the size of the rANS code is asymptotically equal to Shannon entropy of the symbols. That is, for any choice of \(s = (s_1, \ldots, s_m) \in S^m\), \(\text{Decode}(\text{Encode}(s)) = s\). Moreover, for any positive \(x\) and any probability distribution \(p\) over \(S\), it holds that

\[
\sum_{s \in S} p(s) \log(C(x, s)) \leq \log(x) + \sum_{s \in S} p(s) \log \left(\frac{g(s)}{2^n} \right) + \frac{2^n}{x}.
\]

Finally, the cost of encoding the first symbol is \(\leq n\), i.e., for any \(x \in S\), we have \(\log(C(0, s)) \leq n\).

We determine the frequency of the symbols experimentally, by executing the signature computation and collecting several million samples. Finally, we apply some rounding strategy to compute \(g\) such that the average overcost per coordinate caused by this rounding is almost negligible.

3.4 Specification of HAETAE

Readers who are not familiar with the Fiat-Shamir with Aborts line of work may first check the uncompressed version of the scheme in Appendix A to get an uncompressed approach on HAETAE.

We give the description of the signature scheme HAETAE in Figure 7 with the following building blocks:

- Hash function \(H_{\text{gen}}\) for generating the seeds and hashing the messages,
- Hash function \(H\) for signing, returning \(\rho\), a seed for challenge sampling,
- Extendable output function \(\text{expandA}\) for deriving \(a\) and \(A_{\text{gen}}\) from \(\text{seedA}\),
- Extendable output function \(\text{expandS}\) for deriving \(s_{\text{gen}}\) and \(e_{\text{gen}}\) from \(\text{seedS}\) and \(\text{counter}_{sk}\).
• Extendable output function expandYbb for deriving y, b and b' from seed$_{ybb}$ and counter.

The above building blocks can be implemented with symmetric primitives. In all of the following sections, we let $j = (1,0,\ldots,0) \in R^k$. The parameters ρ_0 and α_h refer to the size of the seed and the compression factor, respectively. The parameter β is the bound for $\|cs\|$, which will be checked by bounding

$$f(s) := \tau \cdot \sum_{i=1}^{m} \max_j \|s(\omega_j)\|^2_2 + r \cdot \max_j \|s(\omega_j)\|^2_2$$

by $n\beta^2/\tau$. The parameters B, B', and B'' refer to the radii of hyperballs. At Step 2 of the Sign algorithm, the variable $y_0 \in R_k$ refers to the first component of the vector $y \in R_k^{k+\ell}$. At Step 3 of the Sign algorithm, the vector $z \in R_k^{k+\ell}$ is decomposed as $z = (z_1, z_2)$ with $z_1 \in R_k^\ell$ and $z_2 \in R_k^\ell$. At Step 4 of the Verify algorithm, the variable $z_0 \in R$ refers to the first component of the vector $z \in R_k^{k+\ell}$. We assume that q and α_h satisfy the assumptions from Lemma 5.

Note that at Step 6 of the Verify algorithm, the division by 2 is well-defined as the operand is even and defined modulo $2q$.

We also give a randomized signing of HAETAE in Figure 8. We observe that in the randomized version signing process, significant part of signing including the hyperball sampling algorithms for y can be performed “off-line”, i.e., before receiving a message M to be signed. It holds for computations such as $w = A \cdot y$ and HighBits(w). In the “on-line” phase of signing, we can use y and the corresponding pre-computed components by choosing them randomly among the pre-sampled list.

Lemma 9. We borrow the notations from Figure 7. If we run Verify(v_k, M, σ) on the signature σ returned by Sign(sk, M) for an arbitrary message M and an arbitrary key-pair (sk, v_k) returned by KeyGen(1^λ), then the following relations hold:

1) $w = \text{HighBits}^b(w)$,
2) $w' = \text{LSB}(\lfloor y_0 \rfloor) \cdot j = \text{LSB}(w) = \text{LSB}(w - 2 \cdot |z_2|)$,
3) $2|z_2| - 2z_2 = \text{LowBits}^s(w) - \text{LSB}(w)$ assuming it holds that $B' + \alpha_h/4 + 1 \leq B'' < q/2$.

Proof. Let $m = 2(q - 1)/\alpha_h$. Let us prove the first statement. By definition of h, it holds that $w_3 = \text{HighBits}^b(w) \mod m$. However, the latter part of the equality already lies in $[0, m - 1]$ by Lemma 5. The first part lies in the same range as we reduce mod $^+$ m. Hence, the equality stands over Z too.

We move on to the second statement. By considering only the first component of $z = y + (-1)^b c \cdot s$, we obtain, modulo 2:

$$\tilde{z}_0 = \lfloor z_0 \rfloor = \lfloor y_0 \rfloor + (-1)^b c = \lfloor y_0 \rfloor + c.$$

This yields the result. Moreover, considering everywhere a 2 appears in the definition of A, we obtain that

$$w = A_1 \lfloor z_1 \rfloor - q c j = (\lfloor z_0 \rfloor - c) j \mod 2.$$
We note that the last two elements have the same parity, as the former one has the same parity as the latter one. For the last statement, let us use the two preceding results. In particular, we note the identity

\[w_1 \cdot \alpha_h + w' j = w - \text{LowBits}^b(w) + \text{LSB}(w). \]

We note that the last two elements have the same parity, as the former one has the same parity as \(\text{LowBits}(w, \alpha_h) \). By Lemma 5 their sum has infinite norm \(\leq \)
Sign(sk, M)

// can be done off-line: using vk, make a list L of (y, w, w_1)
1: $y \leftarrow U(B(1/N)\mathcal{R}, (k+\ell)(B))$
2: $w = A \lfloor y \rceil$
3: $w_1 = \text{HighBits}^b(w)$

// can be done on-line: using sk, M and pre-computed (y, w, w_1) sampled // from L
4: $\mu = H_{\text{gen}}(\text{seed}_A, b_1, M)$
5: $(b, b') \leftarrow \{0, 1\}$
6: $c = \text{SampleInBall}(H(w_1, \text{LSB}(\lfloor y_0 \rceil))\mu, \tau)$
7: $h = w_1 - \text{HighBits}^b(w - 2\lfloor z_2 \rceil) \mod 2^{(q-1)\alpha_h}$
8: $z = (z_1, z_2) = y + (-1)^b c \cdot s$
9: if $\|z\|_2 \geq B''$, then
10: go to 5 with resampled (y, w, w_1) // resample $(y, w, w_1) \leftarrow L$
11: else if $(\|2z - y\|_2 < B) \land (b' = 0)$, then
12: go to 5 with resampled (y, w, w_1) // resample $(y, w, w_1) \leftarrow L$
13: else return $\sigma = (\text{Encode(\text{HighBits}^b([z_1])), \text{LowBits}^b([z_1]), \text{Encode}(h), c})$

Fig. 8: Randomized signing of HAETAE. On/offline signing can accelerate the signing process. Note that the signing can also be accelerated even if y is sampled offline alone.

$\alpha_h/2 + 2$. Hence from its definition, it holds that

$$2\tilde{z}_2 = 2[z_2] - \text{LowBits}^b(w) + \text{LSB}(w) \mod \pm q.$$

Finally, this identity holds over the integers as the right-hand side has infinite norm at most $2B'' + \alpha_h/2 + 2 < q$. \hfill \square

Theorem 1 (Completeness). Assume that $B'' = B' + \sqrt{n(k+\ell)/2} + \sqrt{nk} \cdot (\alpha_h/4 + 1) < q/2$. Then the signature schemes of Figures 7 and 8 are complete, i.e., for every message M and every key-pair (sk, vk) returned by $\text{KeyGen}(1^\lambda)$, we have:

$$\text{Verify}(vk, M, \text{Sign}(sk, M)) = 1.$$

Proof. We use the notations of the algorithms. We will focus on the deterministic version in Fig. 7, since Fig. 8 also has almost the same proof. The first and second equations from Lemma 9 state that $\rho = \tilde{\rho}$ and thus

$$c = \text{SampleInBall}(\rho, \tau).$$
On the other hand, we use the last equation from the same lemma to bound the size of \tilde{z}. We have:

$$\|\tilde{z}\| \leq \|z\| + \|z - \lfloor z \rfloor\| + \|\lfloor z \rfloor - \tilde{z}\|$$

$$\leq B' + \sqrt{n(k + \ell)} \cdot \|z - \lfloor z \rfloor\|_{\infty} + \|\lfloor z \rfloor - \tilde{z}\|$$

$$\leq B' + \sqrt{\frac{n(k + \ell)}{2}} + \sqrt{n\ell} \cdot \|\text{LowBits}^h(w)\|_{\infty}$$

$$\leq B' + \frac{\sqrt{n(k + \ell)}}{2} + \sqrt{n\ell} \cdot \left(\frac{\alpha h}{4} + 1\right).$$

The definition of B'' implies that the scheme is correct. \square

3.5 Parameter sets

We instantiate the HAETAÉ signature scheme to reach the NIST PQC security levels 2, 3, and 5. The instantiations are set to be at least as secure as the corresponding parameter sets for Dilithium and Falcon. We use the core-SVP methodology introduced in [ADPS16], a conservative security estimation method in lattice cryptography (see Section 5.2 for more details). The names of the three parameter sets correspond to the core-SVP security figures: HAETAÉ120, HAETAÉ180 and HAETAÉ260. The parameters are provided in Table ??.

The ring dimension n and the modulus q are set to 256 and 64,513 across all parameter sets. Our choice of modulus q allows for efficient integer sampling over \mathbb{Z}_q. This constraint leads to unexpected estimated 236 bits of LWE security for HAETAÉ180. However, if we decrease ℓ by 1 (this is the parameter that has the most impact on the LWE security), we obtain only 175 bits of core-SVP hardness, which is below the target, 180.

Note that increasing k mainly increases the SIS security. Increasing η increases the LWE security while decreasing the SIS security as it makes the SIS bound larger and should only be changed for fine-tuning. Our estimations are computed using a modified version of the Dilithium security script, which we also submit as part of our submission package.

The variable B'' denotes the verification bound, which is half of the SIS bound. It is set significantly smaller than q to avoid potential attacks exploiting the q-vectors: vectors with coordinates that are multiples of q always belong to the lattice corresponding to the cryptanalysis, and could potentially be used to improve lattice reduction attacks.

The figures between parentheses are for the strong unforgeability security in the case of the randomized signing version of HAETAÉ (in the deterministic version, strong and weak unforgeability are the same).
<table>
<thead>
<tr>
<th>Parameter set</th>
<th>NIST Security level</th>
<th>HAETAE-120</th>
<th>HAETAE-180</th>
<th>HAETAE-260</th>
</tr>
</thead>
<tbody>
<tr>
<td>q</td>
<td>64513</td>
<td>64513</td>
<td>64513</td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>6.0</td>
<td>5.0</td>
<td>6.0</td>
<td></td>
</tr>
<tr>
<td>Key Rate</td>
<td>0.1</td>
<td>0.25</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>β</td>
<td>354.82</td>
<td>500.88</td>
<td>623.72</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>9388.97</td>
<td>17773.21</td>
<td>22343.66</td>
<td></td>
</tr>
<tr>
<td>B’</td>
<td>9382.26</td>
<td>17766.15</td>
<td>22334.95</td>
<td></td>
</tr>
<tr>
<td>B’’</td>
<td>12320.79</td>
<td>21365.10</td>
<td>24441.49</td>
<td></td>
</tr>
<tr>
<td>(k, ℓ)</td>
<td>(2, 4)</td>
<td>(3, 6)</td>
<td>(4, 7)</td>
<td></td>
</tr>
<tr>
<td>η</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>τ</td>
<td>58</td>
<td>80</td>
<td>128</td>
<td></td>
</tr>
<tr>
<td>α₀</td>
<td>512</td>
<td>512</td>
<td>256</td>
<td></td>
</tr>
<tr>
<td>d</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Forgery
- BKZ block-size b: 409 (333) 617 (512) 878 (735)
- Classical hardness: 119 (97) 180 (149) 256 (214)
- Quantum hardness: 105 (85) 158 (131) 225 (188)

Key-Recovery
- BKZ block-size b: 428 810 988
- Classical hardness: 125 236 288
- Quantum hardness: 109 208 253

Signature size: 1463 2337 2908
Public key size: 992 1472 2080
Sum: 2455 3809 4988
Private key size: 1376 2080 2720

Table 2: Parameter choices for 120, 180, 260 bits of core-SVP hardness
4 Performance analysis

In this section, we report the performance of the C reference implementation of HAETAE.

4.1 Performance of reference implementation

The C reference implementation of HAETAE can be found on team HAETAE website: https://kpqc.cryptolab.co.kr.

In Table 3, we give the performance results of the reference implementation and the sizes. All benchmarks were obtained on one core of an Intel Core i7-10700k, with TurboBoost and hyperthreading disabled. All cycle counts reported are the median and average of the cycle counts of 1,000 executions of the respective functions.

<table>
<thead>
<tr>
<th>Parameter set</th>
<th>KeyGen</th>
<th>Sign</th>
<th>Verify</th>
</tr>
</thead>
<tbody>
<tr>
<td>HAETAE-120</td>
<td>med</td>
<td>1,384,274</td>
<td>6,253,166</td>
</tr>
<tr>
<td></td>
<td>ave</td>
<td>1,832,973</td>
<td>8,903,852</td>
</tr>
<tr>
<td>HAETAE-180</td>
<td>med</td>
<td>2,333,614</td>
<td>9,472,724</td>
</tr>
<tr>
<td></td>
<td>ave</td>
<td>3,464,004</td>
<td>11,763,246</td>
</tr>
<tr>
<td>HAETAE-260</td>
<td>med</td>
<td>1,693,776</td>
<td>8,989,980</td>
</tr>
<tr>
<td></td>
<td>ave</td>
<td>2,129,737</td>
<td>12,459,046</td>
</tr>
</tbody>
</table>

Table 3: Median and average cycle counts of 1000 executions for HAETAE. Cycle counts were obtained on one core of an Intel Core i7-10700k, with TurboBoost and hyperthreading disabled.

Due to the key and the signature rejection steps, the median and the average values for KeyGen and Sign, respectively, differ clearly. The two values are much closer for Verify.

Based on the profiling and benchmarking of subcomponents, we here discuss the most expensive parts during key generation and signing. During the key generation, the complex Fast Fourier Transformation, , used for computing \(f(s) \), consumes nearly 50% of the total cycles. Among the components of the signing process, we remark that the hyperball sampling is the most significant part, using almost 80% of the total signing cost. It is dominated by randomness sampling, which uses the extendable output function.

In addition, we expect that the on/offline approach will reduce the (online) signing time by 12% to 20%, except for the time spent reading from the list.
5 Security

Unforgeability under Chosen Message Attacks (UF-CMA) is regarded as a standard security notion for digital signature schemes. The adversary is given the verification key and has access to a signing oracle to call on (adaptively) chosen messages. The adversary wins if it forges a valid signature of a new, non-queried message. Strong Unforgeability under Chosen Message Attacks (SUF-CMA) is a slightly stronger security notion than UF-CMA: the adversary wins if it forges a valid signature-message pair that it did not already see.

The concrete SUF-CMA security of HAETA can be proven in the classical Random Oracle Model (ROM) under the standard MLWE and MSIS assumptions. However, since the proof is based on the forking lemma, the reduction is not tight, and it is not applicable in the Quantum Random Oracle Model (QROM) setting. First, using the zero-knowledge property of the underlying identification scheme, Unforgeability under No Message Attacks (UF-NMA) reduces to (S)UF-CMA security, both in the ROM [AFLT16] and the QROM [KLS18, GHHM21].

As pointed out in [DFPS23] and [BBD+23], the security proof in [KLS18] has some flaws on their generic reduction in the QROM, however, they also introduce the fixes to QROM reduction. We therefore base our security proof on the fixed analysis of [DFPS23].

UF-NMA is directly related to a problem that can be viewed as a “convolution” of lattice and hash function problems. We call this problem BimodalSelfTargetMSIS. Similar to the SelfTargetMSIS described in [DKL+18, KLS18], we can analyze the UF-CMA security based on the MLWE and BimodalSelfTargetMSIS assumptions. Note that in the ROM, MSIS reduces to BimodalSelfTargetMSIS, but the reduction is not tight and does not readily extend to quantum adversaries (it relies on the forking lemma). This said, this non-tightness and limitation to classical adversaries is not known to reflect any weakness.

For setting parameters, we consider the hardness of MSIS and MLWE for relevant parameters. Intuitively, the MLWE assumption is used for security against key-recovery attacks, and the BimodalSelfTargetMSIS used for security against forgeries is identified to the MSIS assumption.

5.1 Security definition

We introduce the BimodalSelfTargetMSIS assumption and give a classical reduction from the standard MSIS assumption. BimodalSelfTargetMSIS is a variant of the SelfTargetMSIS assumption adapted to the bimodal setup.

Definition 6 (BimodalSelfTargetMSIS). Suppose that $H : \{0, 1\}^* \times \mathcal{M} \to \mathbb{R}_2$ is a cryptographic hash function. For positive integers q, k, ℓ, a positive real number β and the dimension n of \mathbb{R}, we say that the advantage of an adversary A solving the search-BimodalSelfTargetMSIS problem with
respect to $j \in \mathbb{R}_2^* \setminus \{0\}$ is

$$\text{Adv}^{\text{BimodalSelfTargetMSIS}}_{H,n,q,k,\ell,\beta}(\mathcal{A}) = \Pr \left[0 < \|y\|_2 < \beta \land \right]
\left. \right|_{H(\mathbf{Ay} - qcj \mod 2q, M) = c} \begin{pmatrix}
\mathcal{A}_0, b \leftarrow \mathcal{R}_q^{k \times (t-1)} \times \mathcal{R}_q^{\ell};
A = (-2b + qj)2\mathbf{A}_0 \| 2\mathbf{Id}_k \mod 2q;
(y, c, M) \leftarrow \mathcal{A}^{H(\cdot)}(\mathcal{A})
\end{pmatrix}. $$

In the ROM (resp. QROM), the adversary is given classical (resp. quantum) access to H.

Theorem 2 (Classical Reduction from MSIS to BimodalSelfTargetMSIS).

Assume that q is odd, $H : \{0,1\}^* \times \mathcal{M} \to \mathbb{R}_2$ is a cryptographic hash function modeled as a random oracle and that every polynomial-time classical algorithm has a negligible advantage against $\text{MSIS}_{n,q,k,\ell,\beta}$. Then every polynomial-time classical algorithm has negligible advantage against $\text{BimodalSelfTargetMSIS}_{n,q,k,\ell,\beta/2}$.

Proof (sketch). Consider a $\text{BimodalSelfTargetMSIS}_{n,q,k,\ell,\beta/2}$ classical algorithm \mathcal{A} that is polynomial-time and has classical access to H. If $\mathcal{A}^{H(\cdot)}(\mathcal{A})$ makes Q hash queries $H(\mathbf{w}_i, M_j)$ for $i = 1, \cdots, Q$ and outputs a solution (\mathbf{y}, c, M_j) for some $j \in [Q]$, then we can construct an adversary \mathcal{A}' for $\text{MSIS}_{n,q,k,\ell,\beta}$ as follows.

The adversary \mathcal{A}' can first rewind \mathcal{A} to the point at which the i-th query was made and reprogram the hash as $H(\mathbf{w}_j, M_j) = c' \neq c$. Then, with probability approximately $1/Q$, algorithm \mathcal{A} will produce another solution (\mathbf{y}', c', M_j). We then have

$$\mathbf{Ay} - qcj = z_j = \mathbf{Ay}' - qc'j \mod 2q \quad \text{and} \quad \|y\|_2; \|y\|_2 < \beta/2.$$

As q is odd, we have $\mathbf{A}(\mathbf{y} - \mathbf{y}') = (c - c')j \mod 2$. The fact that $c' \neq c$ implies that the latter is non-zero modulo 2, and hence so is $\mathbf{y} - \mathbf{y}'$ over the integers. As it also satisfies $(-b)\mathbf{A}_0 \| \mathbf{Id}_k \cdot (\mathbf{y} - \mathbf{y}') = 0 \mod q$ and $\|\mathbf{y} - \mathbf{y}'\| < \beta$, it provides a $\text{MSIS}_{n,q,k,\ell,\beta}$ solution for the matrix $(-b)\mathbf{A}_0 \| \mathbf{Id}_k$, where the submatrix $(-b)\mathbf{A}_0 \in \mathcal{R}_q^{k \times \ell}$ is uniform.

The above classical reduction from MSIS to BimodalSelfTargetMSIS is very similar to the reduction from MSIS to SelfTargetMSIS introduced in [DKL+18] and is similarly non-tight. Moreover, since the reduction relies on the forking lemma; it cannot be directly extended to a quantum reduction in the QROM.

Security definitions. We recall the definitions of the above security notions for digital signatures.

Definition 7 (Unforgeability under No Message Attacks (UF-NMA)).

For a signature scheme $S = (\text{KeyGen}, \text{Sign}, \text{Verify})$, the advantage of a UF-NMA adversary \mathcal{A} is defined as:

$$\text{Adv}^{\text{UF-NMA}}_{S}(\mathcal{A}) = \Pr \left[\text{Verify}(\mathbf{v}_k, M, \sigma) = 1 \mid (\mathbf{sk}, \mathbf{vk}) \leftarrow \text{KeyGen}; (M, \sigma) \leftarrow \mathcal{A}(\mathbf{vk}) \right].$$
Definition 8 (Unforgeability under Chosen Message Attacks (UF-CMA)).
Let $S = (\text{KeyGen}, \text{Sign}, \text{Verify})$ be a signature scheme. A UF-CMA adversary A has access to the verification key and a signing oracle to make adaptive queries. Let the queried messages and the received signatures be (M_i, σ_i) for $i = 1, \cdots, Q$. At the end of the experiment, it outputs a message-signature pair (M^*, σ^*). Then the advantage of A is defined as:

$$\text{Adv}_{S}^{\text{UF-CMA}}(A) = \Pr \left[M^* \notin \{M_i\}_{i \in [Q]} \wedge \text{Verify}(vk, M^*, \sigma^*) = 1 \mid (sk, vk) \leftarrow \text{KeyGen}; (M^*, \sigma^*) \leftarrow A^{\text{Sign}(sk, \cdot)} \right].$$

Definition 9 (Strong Unforgeability under Chosen Message Attacks (SUF-CMA)).
Let $S = (\text{KeyGen}, \text{Sign}, \text{Verify})$ be a signature scheme. An SUF-CMA adversary A has access to the verification key and a signing oracle to make adaptive queries. Let the queried messages and the received signatures be (M_i, σ_i) for $i = 1, \cdots, Q$. At the end of the experiment, it outputs a message-signature pair (M^*, σ^*). Then the advantage of A is defined as:

$$\text{Adv}_{S}^{\text{SUF-CMA}}(A) = \Pr \left[(M^*, \sigma^*) \notin \{ (M_i, \sigma_i) \}_{i \in [Q]} \wedge \text{Verify}(vk, M^*, \sigma^*) = 1 \mid (sk, vk) \leftarrow \text{KeyGen}; (M^*, \sigma^*) \leftarrow A^{\text{Sign}(sk, \cdot)} \right].$$

HAETAE achieves UF-CMA security in (Q)ROM, assuming MLWE and BimodalSelfTargetMSIS are hard.

Theorem 3 (UF-CMA Security of HAETAE in the QROM). Let $B' \geq (k + \ell)n / (2e^{\sqrt{\pi}}) q^{k/(k+\ell)}$. Then HAETAE in 7 is UF-CMA secure in the QROM.

Proof (sketch). The proof relies on the analysis of [DFPS23], which reduces UF-CMA security to UF-NMA security, where an adversary is not allowed to make signing queries. This analysis requires that the commitment min-entropy is high and the underlying Σ-protocol is Honest-Verifier Zero-Knowledge (HVZK). The latter is proved by providing a simulator for non-aborting transcripts and proving that the distribution of $\lfloor y \rfloor$ has sufficiently large min-entropy.

Commitment min-entropy. We first claim that the underlying Σ-protocol has large commitment min-entropy. Indeed, $\text{LSB}(y_0)$ is part of the initial commitment, and has min-entropy n.

HVZK. Next, we show that the underlying Σ-protocol satisfies the HVKZ property. To do so, we follow the strategy from [DFPS23, Section 4], which studies the simulation of non-aborting transcripts and applies the leftover hash lemma when simulating aborting transcripts. We propose the following simulator in Figure 9. On input a challenge c, it runs $A(0)$, and if it fails, it samples a uniform commitment and no answer.

(i) Simulating non-aborting transcripts. When a sample is accepted, Lemma 1 states that the simulator follows exactly the same distribution as the real algorithm.

(ii) High min-entropy for source distribution. When a sample is aborted, the distribution of $\lfloor y \rfloor$ has sufficiently high min-entropy to apply [DFPS23, Lemma 4]
Sim(A, c) :
1: y ← U(B_1/N)_{QR, m}(r')
2: w ← (HighBits(A \lfloor y \rfloor), LSB(y_0))
3: b ← U(\{0, 1\})
4: z ← y + (-1)^b v
5: u ← U(R_q^b)
6: u_0 ← U(R_2)
7: \tilde{w} ← (HighBits(2u + qju_0), u_0)
8: return \(w, c, z\) with probability \(p(z)\), else \(\tilde{w}, c, \bot\)

Fig. 9: HAETA\={E} simulator

(we can first consider not applying high and least significant bits and adding them later for free thanks to the data processing inequality of the statistical distance). Indeed, the distribution has min-entropy \(\log((B'\sqrt{\pi})^n(k+\ell)/n(k+\ell)/2))\) as \(n\) is even. Setting \(B' \geq (k + \ell)n/(2\sqrt{\pi}q^{k/(k+\ell)} \cdot 2\log(1/\epsilon))\) is then enough to adapt [DFPS23, Theorem 1] and show that the output of the simulator is within statistical distance \(\epsilon\) to the distribution of a real transcript.

These two properties allow us to apply [DFPS23, Theorem 4] to reduce the SUF-CMA security to UF-NMA security.

Proving UF-NMA security. Finally, we note that the UF-NMA security game is exactly the problem defined in Definition 6, up to replacing the verification key by an uniform matrix (still in HNF form), which is done under the MLWE assumption.

5.2 Cost of known attacks

For the concrete security analysis, we list the best known lattice attacks and consider their costs for attacking HAETA\={E}.

All the best known attacks rely on the Block–Korkine–Zolotarev (BKZ) lattice reduction algorithm [SE94, CN11, HPS11]. The BKZ algorithm is a lattice basis reduction algorithm that repeatedly uses a Shortest Vector Problem (SVP) solver in small-dimensional projected sublattices. The dimension \(b\) of these projected sublattices is called the block-size. BKZ with block-size \(b\) hence relies on an SVP solver in dimension \(b\). The block-size drives the cost of BKZ and determines the resulting basis’s quality. It provides a quality/time trade-off: If \(b\) gets larger, better quality will be guaranteed, but the time complexity for the SVP solver will exponentially increase. The time complexity of the \(b\)-BKZ algorithm is the same as the SVP solver for dimension \(b\), up to polynomial factors. Hence the time complexity differs depending on the SVP solver used. The most efficient SVP algorithm uses the sieving method proposed by Becker et al. [BDGL16] which takes time \(\approx 2^{0.292b+o(b)}\). The fastest known quantum variant is proposed by Chailloux and Loyer in [CL21] and takes time \(\approx 2^{0.257b+o(b)}\).

Based on the BKZ algorithm, we will follow the core-SVP methodology from [ADPS16] and as in the subsequent lattice-based schemes [ABB+19,
28 J.H. Cheon et al.

It is regarded as a conservative way to set security parameters. We ignore the polynomial factors and the $o(b)$ terms in the exponents of the run-time bounds above for the time complexity of the BKZ algorithm.

We consider the primal attack and the dual attack for MLWE, and the plain BKZ attack for MSIS and BimodalSelfTargetMSIS problems. We remark that any MLWE$_{n,q,k,\ell,\eta}$ instance can be viewed as an LWE$_{nk,q,\ell,\eta}$ instance, and also any MSIS$_{n,q,k,\ell,\beta}$ can be viewed as an SIS$_{nk,q,\ell,\beta}$ instance. Even though the MLWE and MSIS problems have some extra algebraic structure compared to the LWE and SIS problems, we do not currently know how to exploit it to improve the best known attacks. For this reason, we estimate the concrete hardness of the MLWE and MSIS problems over the structured lattices as the concrete hardness of the corresponding LWE and SIS problems over the unstructured lattices.

We summarize the costs of the known attacks in Table 4. In the table, the required block-sizes for BKZ and the costs of the attacks in core-SVP hardness are given, estimated by the python script we submitted to the KpqC competition with this document. It is a modification of the security estimator of Dilithium [DS20]. The parameters for MLWE and MSIS problems are chosen based on Theorems 2 and 3. The numbers in parentheses are for the SUF-CMA security of randomized HAETAE (in the case of the deterministic signature, strong and weak unforgeability are the same). All costs are rounded downwards.

<table>
<thead>
<tr>
<th>Parameter sets</th>
<th>HAETAE120</th>
<th>HAETAE180</th>
<th>HAETAE260</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target security</td>
<td>120</td>
<td>180</td>
<td>260</td>
</tr>
<tr>
<td>BKZ block-size b to break SIS</td>
<td>409 (333)</td>
<td>617 (512)</td>
<td>878 (735)</td>
</tr>
<tr>
<td>Classical hardness</td>
<td>119 (97)</td>
<td>180 (149)</td>
<td>256 (214)</td>
</tr>
<tr>
<td>Quantum hardness</td>
<td>105 (85)</td>
<td>158 (131)</td>
<td>225 (188)</td>
</tr>
<tr>
<td>BKZ block-size b for primal attack</td>
<td>431</td>
<td>820</td>
<td>1001</td>
</tr>
<tr>
<td>Classical hardness</td>
<td>126</td>
<td>239</td>
<td>292</td>
</tr>
<tr>
<td>Quantum hardness</td>
<td>110</td>
<td>210</td>
<td>257</td>
</tr>
<tr>
<td>BKZ block-size b for dual attack</td>
<td>428</td>
<td>810</td>
<td>988</td>
</tr>
<tr>
<td>Classical hardness</td>
<td>125</td>
<td>236</td>
<td>288</td>
</tr>
<tr>
<td>Quantum hardness</td>
<td>109</td>
<td>208</td>
<td>253</td>
</tr>
</tbody>
</table>

Table 4: Core-SVP hardness for the best known attacks

Primal attack. Given an LWE instance $(A, b) \in \mathbb{Z}_q^{k \times \ell} \times \mathbb{Z}_q^k$, we first define the lattices $A_m = \{v \in \mathbb{Z}_q^{\ell+m+1} : Bv = 0 \mod q\}$ for all $m \leq k$, where $B = (A_{[m]} \mid 1d_{m} \mid b_{[m]}) \in \mathbb{Z}_q^{m \times (\ell+m+1)}$, $A_{[m]}$ is the uppermost $m \times \ell$ sub-matrix of A and $b_{[m]}$ is the uppermost m-dimensional sub-vector of b. As $(A, b) \in \mathbb{Z}_q^{k \times \ell} \times \mathbb{Z}_q^k$ is an LWE instance, there exist s and e short such that $b = As + e$. This implies that $(s \mid e \mid -1)$ is a short vector of A_m. The primal attack consists in running
MSIS will analyze it more conservatively, as the hardness of
finding a short non-zero vector in the lattice \(\Lambda \) is optimized to minimize
the cost of the attack.

Dual attack. Given an LWE instance \((A, b) \in \mathbb{Z}_q^{k \times \ell} \times \mathbb{Z}_q^k\), we first define the
lattices \(A'_m = \{ (u, v) \in \mathbb{Z}^m \times \mathbb{Z}^\ell : A_{[m]}^\top u + v = 0 \mod q \} \) for all \(m \leq k \),
where \(A_{[m]} \) is the uppermost \(m \times \ell \) sub-matrix of \(A \). If \((u, v) \) is a short vector
in \(A'_m \), then \(u^\top b = v^\top s + u^\top e_{[m]} \) is short if \(b = As + e \) for short vectors \(s \) and \(e \),
and is uniformly distributed modulo \(q \) if \(b \) is uniform and independent from \(A \)
(here \(e_{[m]} \) refers to the uppermost \(m \)-dimensional sub-vector of \(e \)). This provides
a distinguishing attack. The dual attack consists in finding a short non-zero
vector in the lattice \(A'_m \) using BKZ. The variable \(m \) is optimized to minimize
the cost of the attack.

SIS attack. To analyze the hardness of BimodalSelfTargetMSIS, we analyze
the hardness of the corresponding MSIS. Intuitively, if we assume that \(H \) is a
cryptographic hash, then the input structure will not help find the preimage. So
we can assume that \(M \) is fixed. Then the problem turns into finding the preimage
\(x \) of \(c \) with respect to \(H(\cdot, M) \) and then finding \(y \) satisfying \(x = Ay - qc \)
mod \(2q \). Apart from the first step, if we have the preimage \(c \), then the second step
will be turned into finding \(y' \) satisfying \((2b|A_0|Id_k)^\top y' = t \mod q \), for a known
vector \(t \) over \(\mathbb{R}_q \). Here, \(y' \) is defined as \(y' = ((y_0 - x_0)/2, y_1, \ldots, y_{k+\ell-1})^\top \) and
\(t = 2^{-1} \cdot x + x'_0 b \mod q \), where \(x'_0 = (x_0 + c \mod 2) \) which actually decides
the LSB of \(y_0 \). Also, \(\|y'\|_2 \) is bounded by the same bound used for \(\|y\|_2 \). This
implies that solving BimodalSelfTargetMSIS is at least as hard as solving MSIS
with the same norm bound or finding the preimage of a hash as an attack
perspective. However, for the hardness of BimodalSelfTargetMSIS problem, we
will analyze it more conservatively, as the hardness of MSIS problem with a
twice larger norm bound, taking into account the classical reduction from MSIS
to BimodalSelfTargetMSIS in Theorem 2. We analyze the best known attacks
for SIS problem, for both MSIS and BimodalSelfTargetMSIS problems that the
unforgeability of our signature scheme relies on.

Given an SIS instance \(A \in \mathbb{Z}_q^{k \times \ell} \) with a bound \(\beta \), we define the lattices
\(A''_m = \{ u \in \mathbb{Z}^m : Bu = 0 \mod q \} \) for all \(m \leq k + \ell \), where \(B \) is the \(k \times m \)
leftmost sub-matrix of \((A|Id_k) \). Then a short non-zero vector in the lattice \(A''_m \)
is a solution to the SIS problem. Once more, we use BKZ and optimize the choice
of \(m \).

Note that if \(\beta > q \), then there are some trivial non-zero solutions to
SIS problem such as \((q, 0, \cdots, 0)\) with \(\ell_2 \)-norm \(< \beta \). Depending on the parameters,
the security could be affected by some existing attacks [DKL18]. We choose the
prime \(q \) larger than the MSIS bound \(\beta \) to avoid such weaknesses.
6 Conclusion

HAETAE follows the Fiat-Shamir with Abort design for lattice-based signatures. Our goal was to keep as much as possible from the conceptual simplicity of Dilithium and in particular avoid complex rejection conditions, while pushing the scheme in a more efficient direction regarding signature size. Overall, this leads to a simplicity/compactness compromise between Dilithium and Falcon, both standardized in the NIST PQC process.

HAETAE is a scheme with shorter signatures than Dilithium and that is easier to implement and protect against side-channel attacks than Falcon or Mitaka. We believe that the advantages we gain from this compromise outbalance the extra complications in signing we introduced. Indeed, while our scheme is not as compact as Falcon or Mitaka, our gain of 30% to 40% on signature size compared to Dilithium justifies having a scheme that is somewhat harder to implement.

Future works and directions. We believe that our signature scheme provides an interesting in-between between the two selected candidates of the NIST post-quantum cryptography projects. However, our distribution choice is unusual in lattice-based cryptography. This means in particular that we need to develop specific tools to handle this change. We give here a few directions that we are currently exploring in order to improve HAETAE.

Theoretical work. First, we are looking into the sampling algorithm for y. As of now, the algorithm description (see Figure 5) considers the computations over large scale factor for fixed-point arithmetic. We are studying how to reduce the size of the scale factor, for a better performance.

In addition, while our choice of distribution is new, we note that the cryptanalyses approach we considered also apply to Dilithium, and have hence been well-studied already. It is however different when one considers leakage, as the signing algorithms differ significantly. We would like to better understand this aspect.

Implementation work. First, we are optimizing the current implementation, as there are some more rooms yet.

Second, we will also explore implementations with other hash function instantiations, to accelerate this performance critical component. In contrast to NIST, the Korean post-quantum cryptography competition does not restrict the selection of symmetric primitives and thus provides more flexibility for HAETAE compared to Dilithium.

We are also considering side-channel resistance of the scheme. We intend to make a masked reference implementation of HAETAE.

Acknowledgments. The authors thank Jai Hyun Park and Wonhee Cho for their helpful comments on the bimodal hyperball sampling. Julien Devevey and Damien Stehlé were supported by the AMIRAL ANR grant (ANR-21-ASTR-0016), the PEPR quantique France 2030 programme (ANR-22-PETQ-0008).
and the PEPR Cyber France 2030 programme (ANR-22-PECY-0003). Tim Güneysu, Markus Krausz and Georg Land have been supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy - EXC 2092 CASA - 390781972, and by the German Federal Ministry of Education and Research BMBF through the projects QuantumRISC (16KIS1038) and PQC4Med (16KIS1044).
References

A Uncompressed HAETAE

In this appendix, we present HAETAE without its compression step. Readers who are not familiar with the Fiat-Shamir with Aborts line of work may find it easier to read this version first. It highlights the use of bimodal rejection sampling applied to the Fiat-Shamir with Aborts paradigm.

The key generation algorithms ensures that $A s = q j \mod 2q$, while also putting A in a “close to Hermite Normal Form”. Namely, instead of the right part of A being I_d, it is $2I_d$. This subtlety impacts the compression design, in the uncompressed version of HAETAE.

The signature for a message M consists of $c = H(A \lfloor y \rfloor \mod 2q, M)$ and $z = \lfloor y \rfloor \pm cs$. Sometimes, the vector z is rejected and the signing procedure is restarted. Note that $A z = A \lfloor y \rfloor + qc j \mod 2q$, independently of the sign that was chosen for cs. The verification step then checks the consistency of the pair (z, c) and the smallness of z.

KeyGen(1^λ)

1: $A_{\text{gen}} \leftarrow R_q \times (\ell - 1)$ and $(s_{\text{gen}}, e_{\text{gen}}) \leftarrow S_{\ell - 1} \times S_{\eta}$
2: $b = A_{\text{gen}} \cdot s_{\text{gen}} + e_{\text{gen}} \in R_q$
3: $A = (-2b + q j | 2A_{\text{gen}} | 2I_d)$
4: $s = (1, s_{\text{gen}}, e_{\text{gen}})^\top$
5: if $f(s) > n\beta^2 / \tau$ then restart
6: return $sk = (A, s)$ and $vk = A$

Sign(sk, M)

1: $y \leftarrow U(B(1/N)R_{(k+\ell)}(B))$
2: $w \leftarrow A \lfloor y \rfloor$
3: $c = H(w, M) \in R_2$
4: $z = y + (-1)^b c \cdot s$ for $b \leftarrow U(\{0, 1\})$
5: if $\|z\|_2 > B'$, then restart
6: else if $\|2z - y\|_2 < B$, then restart with probability $1/2$
7: return $\sigma = ([z], c)$

Verify($vk, M, \sigma = (z, c)$)

1: $\tilde{w} = Az - qc j \mod 2q$
2: return $(c = H(\tilde{w}, M)) \land (\|\tilde{z}\| < B + \sqrt{n(k+\ell)} / 2)$

Fig. 10: High-level description of uncompressed HAETAE

B Min-entropy

To bound the UF-CMA and SUF-CMA advantage of HAETAE, we give a lower bound of the min-entropy of the underlying identification protocol. The underlying
identification protocol has \(\varepsilon \) bits of min-entropy if

\[
\Pr_{(pk, sk)} \left[\forall (w, x) : \Pr_y \left[\text{HighBits}^h(A([y]), \text{LSB}([y_0])) = (w, x) \right] \leq 2^{-\varepsilon} \right] \geq 1 - 2^{-\varepsilon},
\]

where \((pk, sk) \leftarrow \text{KeyGen}\) and \(y \leftarrow U(B(1/N)R_k + \ell, B)).\) We note that \(\text{LSB}([y_0])\) is a binary vector of length \(n\) and is uniform. Thus, the inner probability is (very loosely) bounded by \(2^{-n}\) regardless of the choice of \((pk, sk)\). Hence we obtain at least 256 bits of min-entropy in all of our parameter sets.

\section{Discretizing Hyperballs}

\subsection{Useful Lemma}

We will rely on the following claim.

\begin{lemma}
\label{lem:discretization-lemma}
Let \(n\) be the degree of \(R\). Let \(m, N, r > 0\) and \(v \in R^m\). Then the following statements hold:
\begin{enumerate}
\item \(|(1/N)R^m \cap B_{R,m}(r)| = |R^m \cap B_{R,m}(Nr)|\),
\item \(|R^m \cap B_{R,m}(r, v)| = |R^m \cap B_{R,m}(r)|\),
\item \(|\text{Vol}(B_{R,m}(r - \sqrt{mn}/2)) \leq |R^m \cap B_{R,m}(r)| \leq \text{Vol}(B_{R,m}(r + \sqrt{mn}/2))|\).
\end{enumerate}
\end{lemma}

\begin{proof}
For the first statement, note that we only scaled \((1/N)R^m\) and \(B_{R,m}(r)\) by a factor \(N\). For the second statement, note that the translation \(x \mapsto x - v\) maps \(R^m\) to \(R^m\).

We now prove the third statement. For \(x \in R^m\), we define \(T_x\) as the hypercube of \(R^m\) centered in \(x\) with side-length 1. Observe that the \(T_x\)'s tile the whole space when \(x\) ranges over \(R^m\) (the way boundaries are handled does not matter for the proof). Also, each of those tiles has volume 1. As any element in \(T_x\) is at Euclidean distance at most \(\sqrt{mn}/2\) from \(x\), the following inclusions hold:

\[
B_{R,m}(r - \sqrt{mn}/2) \subseteq \bigcup_{x \in R^m \cap B_{R,m}(r)} T_x \subseteq B_{R,m}(r + \sqrt{mn}/2).
\]

Taking the volumes gives the result.
\end{proof}

\subsection{Proof of Lemma 1}

\begin{proof}
Figure 2 is the bimodal rejection sampling algorithm applied to the source distribution \(U((1/N)R^m \cap B_{R,m}(r'))\) and target distribution \(U((1/N)R^m \cap B_{R,m}(r))\) (see, e.g., [DFPS22]). For the result to hold, it suffices that the support of the shift of the source distribution by \(v\) is contained in the support of the target distribution. This is implied by \(r' \geq \sqrt{r^2 + t^2}\).

We now consider the number of expected iterations, i.e., the maximum ratio between the two distributions. To guide the intuition, note that if we were to use continuous distributions, the acceptance probability \(1/M'\) would be bounded
by $1/M$. In our case, the acceptance probability can be bounded as follows (using Lemma 10):

$$
\frac{1}{M'} = \frac{|(1/N)R^m \cap B_{R,m}(r)|}{2|1/N)R^m \cap B_{R,m}(r')|} = \frac{|R^m \cap B_{R,m}(N r)|}{2|R^m \cap B_{R,m}(N r')|} \geq \frac{\text{Vol}(B_{R,m}(N r - \sqrt{m n}/2))}{2\text{Vol}(B_{R,m}(N r' + \sqrt{m n}/2))} = \frac{1}{2} \left(\frac{N r - \sqrt{m n}/2}{N r' + \sqrt{m n}/2} \right)^{m n}.
$$

It now suffices to bound the latter term from below by $1/(cM) = 1/(2c(r/r)^{mn})$. This inequality is equivalent to:

$$
c \geq \frac{1}{2} \left(\frac{r}{r - \sqrt{m n}/(2N)} \right)^{mn} \cdot \left(\frac{r' + \sqrt{m n}/(2N)}{r'} \right)^{mn},
$$

and to:

$$
N \geq \frac{1}{c^{1/(mn)}} - 1 \cdot \frac{\sqrt{m n}}{2} \left(\frac{1}{r} + \frac{1}{r'} \right),
$$

which allows to complete the proof.

\[\square\]

C.3 Proof of Lemma 7

Proof. Let $y \in B_{R,m}(N r' + \sqrt{m n}/2)$ and set $z = \lfloor y \rfloor$. Note that z is sampled (before the rejection step) with probability

$$
\frac{\text{Vol}(T_z \cap B_{R,m}(N r' + \sqrt{m n}/2))}{\text{Vol}(B_{R,m}(N r'))},
$$

where T_z is the hypercube of R^m centered in z with side-length 1. By the triangle inequality, this probability is equal to $1/\text{Vol}(B_{R,m}(N r' + \sqrt{m n}/2))$ when $z \in B_{R,m}(N r')$. Hence the distribution of the output is exactly $U(R^m \cap B_{R,m}(N r'))$, as each element is sampled with equal probability and as the algorithm almost surely terminates (its runtime follows a geometric law of parameter the rejection probability).

It remains to consider the acceptance probability, which is:

$$
\sum_{y \in R^m \cap B_{R,m}(N r')} \frac{\text{Vol}(T_y \cap B_{R,m}(N r' + \sqrt{m n}/2))}{\text{Vol}(B_{R,m}(N r' + \sqrt{m n}/2))}.
$$

By the triangle inequality and Lemma 10, it is

$$
\frac{|R^m \cap B_{R,m}(N r')|}{\text{Vol}(B_{R,m}(N r' + \sqrt{m n}/2))} \geq \left(\frac{N r' - \sqrt{m n}/2}{N r' + \sqrt{m n}/2} \right)^{m n}.
$$

Note that by our choice of N, this is $\geq 1/M_0$. \[\square\]
D Fixed-Point Sampling

In this appendix, we explain how to sample from the discretized hyperball distribution using fixed-point arithmetic.

We first describe the representation of numbers and operations. A fixed-point number in precision p will consist in a p-bit signed integer $k \in \mathbb{Z} \cap [-2^{p-1}, 2^{p-1})$ along with an implicit scaling exponent e: the represented number is $x = k \cdot 2^e \in [-2^{e-1}, 2^{e-1})$. The data can for example be stored in a p-bit integer in two’s complement representation. The scaling exponent e is not stored, it only exists on paper. For convenience, a precision p fixed-point number x with implicit exponent e will be referred to as a (p,e)-number.

When performing arithmetic operations on fixed-point numbers, particular care must be taken with overflows: in the analysis, we make sure that during the algorithm execution, any (p,e)-number x will satisfy $|x| < 2^{e-1}$. The following assumes no overflow occurs. We can add, subtract and negate (p,e)-numbers exactly (note that we only consider the situation where the operands of those operations share the same exponent). We assume that we can multiply (p,e_0)-number x_0 with a (p,e_1)-number x_1 into a $(p,e \times e)$-number $x \times$ as if the multiplication was exact and then rounded to a nearest representable number. Finally, we assume that we can compute an inverse square-root of a (p,e)-number x into a (p,e')-number y with possibly slightly more error than that. This is summarized as follows:

\[
\begin{align*}
 x_0 \oplus x_1 &= x_0 + x_1; \\
 x_0 \ominus x_1 &= x_0 - x_1; \\
 \ominus x &= -x; \\
 \|(x_0 \otimes_{e_0,e_1} x_1) - (x_0 \cdot x_1)| &\leq 2^{e \times e-p-1}; \\
 |(1/\sqrt{x})_e - 1/\sqrt{x}| &\leq 2^{e-p}.
\end{align*}
\]

For the sake of simplicity, we fix the precision p to 128 once and for all and never perform operations with numbers of different precisions.

D.1 Gaussian samples

Our hyperball-uniform sampler relies on an algorithm that samples from the continuous Gaussian distribution. In our fixed-point sampling, we will make do with fixed-point approximations to samples from the continuous Gaussian distribution. Instead of sampling from the continuous Gaussian distribution and rounding, we sample from the discrete Gaussian distribution. For the discrete Gaussian sampler, we can for example rely on [BBE+19].

Lemma 11. Let $\sigma > 0$. Let $D_{Z,\sigma}$ (resp. D_σ) be the distribution D over \mathbb{Z} (resp. \mathbb{R}) such that $D(k) \sim \exp(-k^2/(2\sigma^2))$ for all $k \in \mathbb{Z}$ (resp. $k \in \mathbb{R}$). Then we have:

\[
\Pr_{k \sim D_{Z,\sigma}}[|k| \geq 14 \cdot \sigma] \leq 2^{-140} \quad \text{and} \quad \max_{|k| \leq 14 \cdot \sigma} \frac{D_{Z,\sigma}(k)}{D_{\sigma}(k)} \leq \frac{1}{1 - 8/\sigma}.
\]

Note that the statement could be rephrased using the smooth Rényi divergence introduced in [DFPS22].
Proof. Using the discrete Gaussian tail bound from [Lyu12, Lemma 4.4], the weight of $D_{Z,\sigma}$ out of the interval $[-14 \cdot \sigma, 14 \cdot \sigma]$ is $\leq 2^{-140}$. Using the Poisson Summation Formula, we have that:

$$\forall k \in \mathbb{Z}, \ D_{Z,\sigma}(k) \leq \frac{\exp(-k^2/(2\sigma^2))}{\sigma \sqrt{2\pi}}.$$

Further, for $k \in \mathbb{Z} \cap [-14 \cdot \sigma, 14 \cdot \sigma]$, the following inequalities hold:

$$[D_{\sigma}](k) = \frac{1}{\sigma \sqrt{2\pi}} \int_{k-1/2}^{k+1/2} \exp(-x^2/(2\sigma^2))dx$$

$$\geq \frac{\exp(-k^2/(2\sigma^2))}{\sigma \sqrt{2\pi}} \cdot \exp(-(|k|+1/4)/(2\sigma^2))$$

$$\geq \frac{\exp(-k^2/(2\sigma^2))}{\sigma \sqrt{2\pi}} \cdot (1 - \frac{|k|+1/4}{2\sigma^2})$$

$$\geq \frac{\exp(-k^2/(2\sigma^2))}{\sigma \sqrt{2\pi}} \cdot (1 - \frac{8}{\sigma}).$$

This completes the proof. \qed

We will take $\sigma = 2^{124}$ and view the sample from $D_{Z,\sigma}$ as a $(128, 6)$-number obtained as the rounding of a perfect continuous Gaussian sample. Lemma 11 implies that a signature forger for the imperfect Gaussian sampler succeeds with essentially the same probability with the ideal Gaussian sampler.

D.2 From Gaussian samples to approximate hyperball-uniforms

In the following, we assume that we have access to arbitrarily many statistically independent (p, e)-numbers y_i that approximate (perfect) samples y_i from $D_1 = \mathcal{N}(0, 1)$. We first consider the algorithm of Figure 3 with radius 1. We apply it using such y_i’s and fixed-point arithmetic, with appropriately chosen implicit exponents for each step. We show that the vector \mathbf{y} output by the approximate algorithm is close to the vector \mathbf{y} output by the exact algorithm. As \mathbf{y} is uniformly distributed in a hyperball, the computed vector \mathbf{y} is an approximation to such a sample.

We first bound the quantities involved during the computations. These bounds are for the exact quantities. To avoid overflows, we actually need them for the corresponding computed quantities. We will see later that as the numerical errors are low, the bounds still essentially hold. The bounds are probabilistic, and hold with probability extremely close to 1.

Lemma 12. Let $d_{\min} = 6 \cdot 256 + 2$ and $d_{\max} = 11 \cdot 256 + 2$. The following bounds hold for all $d \in [d_{\min}, d_{\max}]$:

$$\Pr_{y \in D_1} \left[|y| \geq 2^d \right] < 2^{-188},$$
\[
\Pr_{y_i \sim D_1 \forall i \in [d]} \left[\|y\|_2^2 \geq 2^{12} \right] < 2^{-144}, \quad \Pr_{y_i \sim D_1 \forall i \in [d]} \left[\|y\|_2^2 \leq 2^9 \right] < 2^{-144}.
\]

\[
\Pr_{z \sim U(\mathbb{B}_d - 2(1))} \left[|z_1| \geq 2^{-2} \right] < 2^{-150}.
\]

Proof. The first probability is \(1 - \text{erf}(2^{4}/\sqrt{2})\). The two others can be bounded the Laurent-Massart bounds for the chi-squared distribution, i.e., for all \(d, t\):

\[
\Pr_{y_i \sim D_1 \forall i \in [d]} \left[\|y\|_2^2 \geq d + 2\sqrt{dt} + 2t \right] \leq \exp(-t),
\]

\[
\Pr_{y_i \sim D_1 \forall i \in [d]} \left[\|y\|_2^2 \leq d - 2\sqrt{dt} \right] \leq \exp(-t).
\]

For the last bound, we use [DFPS22, Lemma A.13]. The probability is exactly \(I_1 - 1/\eta^2((d + 1)/2, 1/2)\) where \(I\) refers to the regularized incomplete Beta function and \(1/\eta\) is probabilistic magnitude upper bound. The results follow from numerical computations.

Throughout the execution of the approximate version of the algorithm of Figure 3, we fix the precision to \(p \geq 64\). The implicit exponents vary depending on the algorithm step: the \(y_i\)'s are represented by \((p, 5)\)-numbers, their squares by \((p, 13)\)-numbers, the squared-norm \(\|y\|^2\) by a \((p, 13)\)-number, the inverse-norm \(1/\|y\|\) by a \((p, -3)\)-number and the output coordinates on \((p, -1)\)-numbers.

Assume that we have \(|y_i - y_i| \leq \epsilon_0\) for all \(i\), for some \(\epsilon_0 \geq 2^{-p+5}/2 = 2^{-p+4}\). To avoid overflows of \(y_i\)'s, it suffices that \(|y_i| \leq 2^4 - 2^{-p+5} - \epsilon_0\). The first bound from Lemma 12 still holds for any \(\epsilon_0 \leq 2^{-5}\).

We now consider the computations of the approximations \(\overline{y_i^2}\)'s to the \(y_i^2\)'s. We have:

\[
\left| \overline{y_i^2} - y_i^2 \right| \leq \left| \overline{(\overline{y_i} \otimes_{5,5} \overline{y_i})} - \overline{y_i^2} \right| + \left| \overline{y_i - y_i} \cdot |\overline{y_i} + y_i| \right|
\]

\[
\leq 2^{-p+12} + |\overline{y_i - y_i}| \cdot (|\overline{y_i} - y_i| + 2|y_i|)
\]

\[
\leq 2^{-p+12} + 2^6 \cdot \epsilon_0.
\]

As addition is exact, we obtain:

\[
\left| \overline{\|y\|^2} - \|y\|^2 \right| \leq d_{\max} \cdot (2^{-p+12} + 2^6 \cdot \epsilon_0) =: \epsilon_1.
\]

To avoid overflow of \(\overline{\|y\|^2}\) and hence of the \(\overline{y_i^2}\)'s, it suffices that \(\|y\|^2 \leq 2^{12} - 2^{-p-13} - \epsilon_1\). The second bound from Lemma 12 still holds for any \(\epsilon_0 \leq 2^{-5}\).
We consider the algorithm from Figure 5. Step 2 is performed exactly. For\(r\) within\(\epsilon \) for all\(t \) the approximate version of the algorithm. From the discussion above, we have,\(D_{t} \) of the rounded vector\(z \) both from its corresponding\(r \) Step 1, we use a sample \(\epsilon \) for \(M \) contains that errors are always in the same direction.\(\epsilon \) is of the order of \(2^{-3} \)

\[
\left| \frac{1}{\|y\|} - \frac{1}{\|y\|} \right| \leq \left| \frac{1}{\sqrt{\epsilon}} - \frac{1}{\|y\|} \right| + \frac{1}{\|y\|} - \frac{1}{\|y\|}
\]

\[
\leq 2^{-p-3} + \frac{\|y\|^2 - \|y\|^2}{2\|y\|^2 - \|y\|^2}^{-3/2}
\]

\[
\leq 2^{-p-3} + \frac{\epsilon}{2\|y\|^3}
\]

\[
\leq 2^{-p-3} + 2^{-15}(1 + 2^{-1})
\]

where the last inequality holds for any \(\epsilon_0 \leq 2^{-15} \). To avoid overflow of \(\frac{1}{\|y\|} \), it suffices that \(1/\|y\| \leq 2^{-3} - 2^{-p-3} - \epsilon_2 \). The third bound from Lemma 12 still holds for any \(\epsilon_0 \leq 2^{-15} \).

We finally evaluate the accuracy of the output vector \(z \) with respect to \(z := (y_1, \ldots, y_d)/\|y\|^2 \). We have, for all \(i \):

\[
\left| z_i - z_i \right| \leq \left| y_i \cdot \frac{1}{\|y\|} \cdot \frac{1}{\|y\|} \right| + \left| y_i \cdot \frac{1}{\|y\|} - y_i/\|y\| \right|
\]

\[
\leq 2^{-p-2} + \frac{1}{\|y\|} - 1/\|y\| \cdot \left| y_i \right| + \left| y_i - y_i/\|y\| \right|
\]

\[
\leq 2^{-p-2} + 2^5 \cdot \epsilon_2 + 2^{-4} \cdot \epsilon_0 =: \epsilon_3.
\]

To avoid overflow of \(z_i \), it suffices that \(|z_i| \leq 2^{-2} - 2^{-p-3} - \epsilon_3 \). The fourth bound from Lemma 12 still holds for any \(\epsilon_0 \leq 2^{-20} \).

Note that \(\epsilon_3 \) is of the order of \(2^{14}2^{-p} \). This is a crude upper bound, as it assumes that errors are always in the same direction.

D.3 Using Approximate Hyperball-Uniforms

We consider the algorithm from Figure 5. Step 2 is performed exactly. For Step 1, we use a sample \(z \) obtained as described in the previous subsection, and multiply it by a radius \(r'' \) that we assume to be given as a 64-bit fixed-point arithmetic number. Given \(z \), this induces a change of the implicit exponent, and an additional tiny error term. As \(\overline{z} \) belongs to \([-1/4, 1/4]\) and is within \(\epsilon_4 \) from its corresponding \(z \), we can prove that \(r'' \cdot z \) belongs to \((-r/4, r/4)\) and is within \(r'' \cdot (\epsilon_4 + 2^{-63}) \) from its corresponding \(r'' \cdot z \).

Let \(t \) denote the rounded vector at Step 2. When rounded as in Step 2, both \(r'' \cdot z \) and \(r'' \cdot z \) result in the same vector \(t \) when the distance from \(r'' \cdot z \) to \(z \), \(N \) is \(< N/2 \), \(\epsilon_4 + 2^{-63} \). Let \(D_{\text{ideal contained}} \) be the distribution over \(\mathbb{Z}^{mn} \cap B(r') \) of the rounded vector \(t \) at Step 2, when the whole rounding hypercube is contained in the initial hyperball. Let \(D_{\text{real contained}} \) be the analogous distribution for the approximate version of the algorithm. From the discussion above, we have, for all \(t \in \mathbb{Z}^{mn} :

\[
\frac{D_{\text{ideal contained}}(x)}{D_{\text{real contained}}(x)} \geq \left(1 - \frac{2r''(\epsilon_4 + 2^{-63})}{N} \right)^{mn}.
\]
Here we want to use [Pre17, Lemma 3]. We also need an upper bound counterpart to the above. For usability for up to 2^{67} samples via Rényi divergence arguments, it suffices that the relative error δ satisfies $\approx 2^{-37}$. In practice, we will be using $N_r' \in [2^{25}, 2^{28})$ as the sampling radius: if the sample is larger than that, we will not keep it.

D.4 Rejection Sampling with Approximate Distribution

In this subsection, we discuss what happens when we replace the ideal distribution used as a source for the rejection sampling by the real distribution.

Lemma 13. Let v a vector, $M > 0$ and P^i, Q^i, Q^r be three probability distributions such that:

$R_\infty(Q^i\|Q^r) < +\infty$ and $R_\infty(Q^r\|Q^i) < +\infty$ and $R_\infty(P^i\|Q_{\pm v}^i) \leq M$.

Then if we use the bimodal rejection sampling strategy for Q^i and P^i with Q^r as a source, the resulting final distribution P^r is such that

$R_\infty(P^r\|P^i) \leq R_\infty(Q^i\|Q^r)R_\infty(Q^r\|Q^i)$.

Proof. Let p^i and p^r denote the acceptance probability of a single step of rejection sampling in the ideal and real setup, respectively. As each is related to a single random variable following either Q^i or Q^r and then follows the same process, it holds that

$p^i / p^r \leq R_\infty(Q^i\|Q^r)$.

Moreover, note that $p^i = 1/M$. Hence, we have

$P^r : x \mapsto Q^r(x - v) + Q^r(x + v) / Q^i(x - v) + Q^i(x + v) \cdot P^i(x) / M \cdot p^r$.

The first fraction is the ratio of the probability of the event “Get a y such that $y \pm v = x$” in the real (numerator) and ideal (denominator) setup. Hence, this ratio is bounded from above by $R_\infty(Q^r\|Q^i)$. Plugging the upper bound for each fraction yields the result. \hfill \Box