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Abstract. We present HAETAE, a new lattice-based signature scheme for
shorter signatures, which we are submitting to the Korean Post-Quantum
Cryptography Competition for Korean standards. While based on the Fiat-
Shamir with Aborts paradigm like the NIST-selected Dilithium signature
scheme, our design choices target an improved complexity/compactness
compromise that is highly relevant for many space-limited scenarios such
as DNSSEC. We primarily focus on reducing signature and verification
key sizes so that signatures fit into one TCP or UDP datagram while
preserving a high level of security against a variety of attacks. For the
same level of security, our scheme has signature and verification key sizes
that are up to 40% smaller and 20% smaller, respectively, compared to
Dilithium. Although this compactness comes at the cost of slightly more
complex operations such as hyberball sampling, we expect optimized
versions to run nearly as fast as Dilithium. From an implementation
point of view, most operations of HAETAE are relatively simple, enabling
straightforward constant-time implementations and side-channel masking.

Keywords: Lattice Cryptography · Post-Quantum Cryptography ·
Digital Signatures.
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Changelog

May 2, 2023 First, all the missing parts in the first round submission [CCD+22]
are included in the reference code, which can be found on the team HAETAE
website: https://kpqc.cryptolab.co.kr. In the first round submission, the
rANS encoding of the signature and the rejection sampling for secret keys were
explained in the document but not in the reference code. We implement the rANS
encoding for z1 and additionally apply it to the hint vector (h) compression along
with slightly modified HighBits and LowBits algorithms. We implemented the
rejection algorithm for the secret key rejection but with a new rejection condition.
The new condition reduces the magnitude of the secret key when multiplied by
the challenge, hence the SIS bound. As a result, we update the signature sizes to
the actual sizes with the encodings.

Second, we remove all the algorithms using floating-point arithmetic. The
continuous Gaussian sampling, required for the continuous hyperball uniform
sampling, is implemented in fixed-point arithmetic by discretizing the hyperball
with an appropriate scale factor. Based on this, we further make the reference
implementation to be constant-time; that is, the execution time for the signing is
independent of the secret key.

Third, we introduce a verification key truncation algorithm which is adopted
from Dilithium. This is applied to the first two parameters sets HAETAE-120 and
HAETAE-180.

We change the parameter set by considering all the above changes, which
give a trade-off between the sizes and speed.

Lastly, we change our security proof to rely on the analysis of [DFPS23] since
the analysis of [KLS18] is flawed, as pointed out in [DFPS23] and [BBD+23].

1 Introduction

We introduce HAETAE5, a new post-quantum digital signature scheme, whose
security is based on the hardness of the module versions of the lattice problems
LWE and SIS [BGV12, LS15]. The scheme design follows the “Fiat-Shamir with
Aborts” paradigm [Lyu09, Lyu12], which relies on rejection sampling: rejection
sampling is used to transform a signature trial whose distribution depends
on sensitive information, into a signature whose distribution can be publicly
simulated. Our scheme is in part inspired from CRYSTALS-Dilithium [DKL+18], a
post-quantum “Fiat-Shamir with Aborts” signature scheme which was selected for
standardization by the American National Institute of Standards and Technology
(NIST). HAETAE differs from Dilithium in two major aspects: (i) we use a
bimodal distribution for the rejection sampling, like in the BLISS signature
scheme [DDLL13], instead of a “unimodal” distribution like Dilithium, (ii) we
sample from and reject to hyperball uniform distributions, instead of discrete

5 The haetae is a mythical Korean lion-like creature with the innate ability to distinguish
right from wrong.
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hypercube uniform distributions. This last aspect also departs from BLISS, which
relies on discrete Gaussian distributions, and follows a suggestion from [DFPS22],
which studied rejection sampling in lattice-based signatures following the “Fiat-
Shamir with Aborts” paradigm.

1.1 Design rationale

A brief recap on Fiat-Shamir with Aborts. The Fiat-Shamir with Aborts
paradigm was introduced in lattice-based cryptography in [Lyu09, Lyu12]. The
verification key is a pair of matrices (A,T = AS mod q), where A is a uniform
matrix modulo some integer q and S is a small-magnitude matrix that makes
up the secret key. A signature for a message M is comprised of an integer
vector z of the form y + Sc, for some random small-magnitude y and some
small-magnitude challenge c = H(Ay mod q,M). Rejection sampling is then
used to ensure that the distribution of the signature becomes independent from
the secret key. Finally, the verification algorithm checks that the vector z is short
and that c = H(Az−Tc mod q,M).

Improving compactness. As analyzed in [DFPS22], The choice of the
distributions to sample from and reject to has a major impact on the signature
size. Dilithium relies on discrete uniform distributions in hypercubes, which
makes the scheme easier to implement. However, such distributions are far from
optimal in terms of resulting signature sizes. We choose a different trade-off: by
losing a little on ease of implementation, we obtain more compact signatures.

Uniform distributions in hyperballs. A possibility would be to consider
Gaussian distributions, which are superior to uniform distributions in hypercubes,
in terms of resulting signature compactness (see, e.g., [DFPS22]). However, this
choice has two downsides. First, the rejection step involves the computation
of a transcendental function on an input that depends on the secret key. This
is cumbersome to implement and sensitive to side-channel attacks [EFGT17].
Second, since the final signature follows a Gaussian distribution there is a nonzero
probability that the final signature is too large and does not pass the verification.
The signer must realise that and reject the signature, making the expected number
of rejects slightly grow in practice. Uniform distributions over hyperballs have
been put forward in [DFPS22] as an alternative choice of distributions leading
to signatures with compactness between those obtained with Gaussians and
those obtained with hypercube uniforms. Compared to Gaussians, they do not
suffer from the afore-mentioned downsides: the rejection step is simply checking
whether Euclidean norms are sufficiently small; and as there is no tail, there is
no need for an extra rejection step to ensure that verification will pass. HAETAE
showcases that this provides an interesting simplicity/compactness compromise.

Bimodal distributions. A modification of Lyubashevsky’s signatures [Lyu09,
Lyu12] introduced in [DDLL13] allows for the use of bimodal distributions in the
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signature generation. The signature is now of the form y + (−1)bSc, where y
is sampled from a fixed distribution and b ∈ {0, 1} is sampled uniformly. The
signature is then rejected to a given secret-independent target distribution.
To make sure that the verification test passes, computations are performed
modulo 2q and key generation forces the equality AS = qId. It turns out that
this modification can lead to more compact signatures than the unimodal setup.
In [DDLL13], the authors relied on discrete Gaussian distributions. We instead
use uniform distributions over hyperballs: like for Gaussians, switching from
unimodal to bimodal for hyperball-uniforms leads to more compact signatures.

Flexible design by working with modules. The original design for
BLISS [DDLL13] relies on Ring-LWE and Ring-SIS, and a variant of the key
generation algorithm relied on ratios of polynomials, à la NTRU. This setup
forces to choose a working polynomial ring for any desired security level. In order
to offer more flexibility without losing in terms of implementation efficiency, we
choose to rely on module lattices, like Dilithium, with a fixed working polynomial
ring R = Z[x]/(x256 + 1) across all security levels. In our instantiations, we target
the NIST PQC security levels 2, 3 and 5. Varying the security and updating the
parameters is easily achievable and we provide a security estimator that is able
to help one reach a given target security.

A compact verification key. The flexibility provided by modules allows us
to reduce the verification key size. Instead of taking the challenge c as a vector
over R, we choose it in R: the main condition on the challenge is that it has
high min-entropy, which is already the case for binary vectors over R. As a
result, the secret S can be chosen as a vector over R rather than a matrix.
The key-pair equation AS = qId then becomes As = qj, where j is the vector
starting with 1 and then continuing with 0’s. To further compress the verification
key, we use verification key truncation adopted from Dilithium by taking into
account the residue modulo 2. Our key generation algorithm just creates an
MLWE sample (Agen,b − a = Agensgen + egen) modulo q, where a is uniform
random over Rkq . By truncating b as b = b1 + b0, we define a k× (k+ `) matrix
A as A = (−2(a − b1) + qj| 2Agen| 2Idk) mod 2q. The key-pair equation is
satisfied for s = (1| sgen| egen − b0). The verification key consists of (Agen,a,b1).
As (a| Agen) is uniformly distributed, we can generate it from a seed using an
extendable output function, and the verification key is reduced to the seed and
the vector b1. If we had kept the original key-pair equation AS = qId, then the
appropriately modified variant of our key-generation algorithm would have led
to a verification key that is a matrix (with a seed) rather than a vector (with a
seed).

Compression techniques to lower the signature size. We use two
techniques to compress the signatures. First, as the verification key A is in
(almost)-HNF, we can use the Bai-Galbraith technique [BG14]. Namely, the second
part of the signature, which is multiplied by 2Id in the challenge computation
and verification algorithm, can be aggressively compressed by cutting its low
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bits. This requires in turn modifying the computation of the challenge c and the
verification algorithm, in order to account for this precision loss. Usually, this is
done by keeping only the high bits of Ay in the computation of the challenge.
However, as we multiply everything by 2, we do not keep the lowest bit of those
high bits and keep the (overall) least significant bit instead. As in Dilithium, our
decomposition of bits technique is a Euclidean division with a centered remainder,
and we choose a representative range for modular integers that starts slightly
below zero to further reduce the support of the high bits. The second compression
technique, suggested in [ETWY22] in the context of lattice-based hash-and-sign
signatures, concerns the choice of the binary representation of the signature. As
the largest part of it consists in a vector that is far from being uniform, we can
choose some entropic coding to obtain a signature size close to its entropy. In
particular, as in [ETWY22], we choose the efficient range Asymmetric Numeral
System to encode our signature, as it allows us to encode the whole signature
and not lose a fraction of a bit per vector coordinate, like with Huffman coding.
We can further apply the two techniques to the hint vector h, which is also a
part of the signature, to reduce the signature sizes.

Efficient choice of modulus. We choose the prime q to be a good prime in
the sense that the ring operations can be implemented efficiently and that the
decomposition of bits algorithms, are correctly operated. For ring operations, we
use the Number Theoretic Transform (NTT) with a fully splitting polynomial ring.
The polynomial ring R fully splits modulo q when the multiplicative group Z×q
has an element of order 512, or equivalently when q = 1 mod 512. We choose
q = 64513, which indeed satisfies this property. Interestingly, it fits in 16 bits,
which allows dense storing on embedded devices. Furthermore, it is close to the
next power of two, which is convenient for the sampling of uniform integers
modulo q.

Fixed-point algorithm for hyperball sampling. Unlike uniform Gaussian
sampling or uniform hypercube sampling, uniform hyperball sampling has not
been considered in the cryptographic protocols before the suggestion of [DFPS22].
To narrow the gap between the hyperball uniforms sampled in the real and
the ideal world, we discretize the hyperball and bound the numerical error and
their effect by analyzing their propagation. This leads to a fixed-point hyperball
sampling algorithm and, therefore, the fixed-point implementation of the whole
signing process.

Deterministic and randomized version. HAETAE can be set in a determin-
istic or randomized mode. We focus on the deterministic version, but we also
give the randomized version. Note that in the randomized version, a significant
part of the signing algorithm can be executed off-line as it does not depend on
the message.

We give estimated security as well as sizes for our parameter sets in Table 1.
The full parameters sets can be found in Section 3.5. The security of our signature
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is stated in terms of Core-SVP hardness, as introduced in [ADPS16]. We target
the core-SVP classical hardness of the known attacks against the three proposed
instantiations of HAETAE to be at least 120, 180 and 260, respectively. The
numbers between parentheses refer to the strong unforgeability in the case of
the randomized version of the signature scheme (for the deterministic version,
strong and weak unforgeability are the same). The parameter M refers to the
number of average rejections during signing. The KeyRate is the key rejection
rate in the key generation algorithm. The parameter η refers to the infinity norm
of the secret key sgen. The parameter τ refers to the Hamming weight of the
binary challenge c ∈ R. The parameter d refers to the bit truncated from the
verification key. The sizes are given in bytes. For the signature sizes, we give the
average signature sizes when using rANS coding.

Parameter set HAETAE-120 HAETAE-180 HAETAE-260
NIST Security level 2 3 5

q 64513 64513 64513
M 6.0 5.0 6.0

Key Rate 0.1 0.25 0.1
(k, `) (2,4) (3,6) (4,7)
η 1 1 1
τ 58 80 128
αh 512 512 256
d 1 1 0

Forgery
BKZ block-size b 409 (333) 617 (512) 878 (735)
Classical hardness 119 (97) 180 (149) 256 (214)
Quantum hardness 105 (85) 158 (131) 225 (188)

Key-Recovery
BKZ block-size b 428 810 988
Classical hardness 125 236 288
Quantum hardness 109 208 253

Signature size 1463 2337 2908
Public key size 992 1472 2080

Sum 2455 3809 4988
Private key size 1376 2080 2720

Table 1: HAETAE parameters sets. Hardness is measured with the Core-SVP
methodology.

1.2 Advantages and limitations

Advantages

– Our scheme relies on the difficulty of hard lattice problems, which have been
well-studied for a long time.
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– Signature sizes are 30% to 40% smaller than those of Dilithium at comparable
security levels, and verification keys are 20% to 25% smaller.

– Implementation-wise, while our design rationale departs from Dilithium’s,
the scheme remains implementation-friendly. In particular,
• the rejection step only involves computations of Euclidean norms,
• the whole signing process can be implemented with fixed-point arithmetic
• a significant message-independent part of signing can be performed “off-

line”, for the randomized version of the scheme.

Comparison with Hash and Sign lattice signatures. In terms of ease of
implementation, our scheme favorably compares to lattice signatures based
on the hash and sign paradigm such as Falcon [FHK+17] and Mitaka [EFG+22].
HAETAE, Falcon and Mitaka all three rely on some form of Gaussian sampling,
which are typically difficult to implement and protect against side-channel attacks.
Falcon makes sequential calls to a Gaussian sampler over Z with arbitrary centers.
Mitaka also relies on an integer Gaussian sampler with arbitrary centers, but
the calls to it can be massively parallelized. It also uses a continuous Gaussian
sampler, which is arguably simpler. HAETAE, however, only relies on a (zero-
centered) continuous Gaussian sampler, used to sample uniformly in hyperballs.
The calls to it can also be massively parallelized. This difference makes HAETAE
possible to have a fixed-point signing algorithm and easier maskings. Further, in
the randomized version of the signature scheme, these samples can be computed
off-line as they are independent from the message to be signed. The on-line
tasks are far simpler than those of Falcon and Mitaka. Finally, we note that
key-generation is much simpler for HAETAE than in Falcon and Mitaka.

Limitations

– The key generation algorithm restarts if the secret key does not satisfy the
key rejection condition. This makes the key generation algorithm of HAETAE
slower than Dilithium’s.

Comparison with Hash and Sign signatures. While HAETAE is simpler from an
implementation perspective, its verification key and signature sizes are larger
than Falcon’s and Mitaka’s.
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2 Preliminaries

2.1 Notations

Matrices are denoted in bold font and upper case letters (e.g., A), while vectors
are denoted in bold font and lowercase letters (e.g., y or z1). The i-th component
of a vector is denoted with subscript i (e.g., yi for the i-th component of y).

Every vector is a column vector. We denote concatenation between vectors
by putting the rows below as (u,v) and the columns on the right as (u|v). We
naturally extend the latter notation to concatenations between matrices and
vectors (e.g., (A|b) or (A|B)).

We define a polynomial ring R = Z[x]/(xn + 1) where n is a power of 2
integer and for any positive integer q the quotient ring Rq = Z[x]/(q, xn + 1) =
Zq[x]/(xn + 1). We abuse notations and identify R2 with the set of elements
in R with binary coefficients. We also define a polynomial ring over real numbers
RR = R[x]/(xn + 1). For an integer η, we let the set of polynomials of degree
less than n with coefficients in [−η, η] ∩ Z be denoted by Sη. Given y =
(
∑

0≤i<n yi x
i, · · · ,

∑
0≤i<n ynk−n+i x

i)> ∈ Rk (or RkR), we define its `2-norm as

the `2-norm of the corresponding “flattened” vector ‖y‖2 = ‖(y0, · · · , ynk−1)>‖2.

Let BR,m(r, c) = {x ∈ RmR |‖x − c‖2 ≤ r} denote the continuous hyperball
with center c ∈ Rm and radius r > 0 in dimension m > 0. When c = 0, we omit
the center. Let B(1/N)R,m(r, c) = (1/N)Rm ∩ BR,m(r, c) denote the discretized
hyperball with radius r > 0 and center c ∈ Rm in dimension m > 0 with respect
to a positive integer N . When c = 0, we omit it. Given a measurable set X ⊆ Rm
of finite volume, we let U(X) denote the continuous uniform distribution over X.
It admits x 7→ χX(x)/Vol(X) as a probability density, where χX is the indicator
function of X and Vol(X) is the volume of the set X. For the normal distribution
over R centered at µ with standard deviation σ, we use the notation N (µ, σ).

For a positive integer α, we define r mod± α as the unique integer r′ in the
range [−α/2, α/2) satisfying the relation r = r′ mod α. We also define r mod+ α
as the unique integer r′ in the range [0, α) satisfying r = r′ mod α. We denote the
least significant bit of an integer r with LSB(r). We naturally extend this to integer
polynomials and vectors of integer polynomials, by applying it component-wise.

2.2 Lattice assumptions

We first recall the well-known lattice assumptions MLWE and MSIS on algebraic
lattices.

Definition 1 (Decision-MLWEn,q,k,`,η). For positive integers q, k, `, η and the
dimension n of R, we say that the advantage of an adversary A solving the
decision-MLWEn,q,k,`,η problem is

AdvMLWE
n,q,k,`,η(A) =

∣∣Pr
[
b = 1 | A← Rk×`q ; b← Rkq ; b← A(A,b)

]
− Pr

[
b = 1 | A← Rk×`q ; (s1, s2)← S`η × Skη ; b← A(A,As1 + s2)

] ∣∣.
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Definition 2 (Search-MSISn,q,k,`,β). For positive integers q, k, `, a positive real
number β and the dimension n of R, we say that the advantage of an adversary A
solving the search-MSISn,q,k,`,β problem is

AdvMSIS
n,q,k,`,β(A) = Pr

[
0 < ‖y‖2 < β ∧

(A | Idk) · y = 0 mod q
A← Rk×`q ; y← A(A)

]
.

2.3 Bimodal hyperball rejection sampling

Recently, Devevey et al. [DFPS22] conducted a study of rejection sampling in
the context of lattice-based Fiat-Shamir with Aborts signatures. They observe
that (continuous) uniform distributions over hyperballs can be used to obtain
compact signatures, with a relatively simple rejection procedure. HAETAE uses
(discretized) uniform distributions over hyperballs, in the bimodal context. The
proof of the following lemma is available in Appendix C.

Lemma 1 (Bimodal Hyperball Rejection Sampling). Let n be the degree
of R, c > 1, r, t,m > 0, and r′ ≥

√
r2 + t2. Define M = 2(r′/r)mn and set

N ≥ 1

c1/(mn) − 1

√
mn

2

(
c1/(mn)

r
+

1

r′

)
.

Let v ∈ Rm ∩ B(1/N)R,m(t). Let p : Rm → {0, 1/2, 1} be defined as follows

p(z) =


0 if ‖z‖ ≥ r,
1/2 else if ‖z− v‖ < r′ ∧ ‖z + v‖ < r′,

1 otherwise.

Then there exists M ′ ≤ cM such that the output distributions of the two algorithms
from Figure 2 are identical.

−v v

Fig. 1: The HAETAE eyes

Figure 1 illustrates (the continuous version) of the rejection sampling that
we consider. The black circles have radii equal to r′ and the pink circle has
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radius r. We sample a vector z uniformly inside one of the black circles (with
probability 1/2 for each) and keep z with p(z) = 1/2 if z lies in the blue zone,
with probability p(z) = 1 if it lies inside the pink circle but not in the blue zone,
and with probability p(z) = 0 everywhere else.

A(v) :

1: y← U(B(1/N)R,m(r′))
2: b← U({0, 1})
3: z← y + (−1)bv
4: return z with probability p(z)
5: else return ⊥

B :

1: z← U(B(1/N)R,m(r))
2: return z with probability 1/M ′

3: else return ⊥

Fig. 2: Bimodal hyperball rejection sampling

As we do not know the exact value of M ′, we cannot use algorithm B as a
signature simulator in the security proof of HAETAE. Note that in the security
proofs of lattice-based Fiat-Shamir with Aborts signatures, it is required to have
an efficient simulator that simulates all iterations of the signature algorithm.
Hence, simply replacing B with a version that always output z does not suffice.
Our proposal is to use A(0) as an efficient simulator: as 0 has norm at most t for
any t > 0, algorithm A(0) has statistical distance 0 with B and thus with A(v)
for any v with norm ≤ t.

2.4 Sampling in a continuous hyperball-uniform

We explain how to sample from a uniform continuous hyperballl distribution.
Multiple strategies exist, and the one we choose is such that a k-dimensional
module sample is obtained using only kn+2 one-dimensional continuous Gaussian
samples:

y← U(BR,k(r′′))

1: yi ← N (0, 1) for i = 0, · · · , nk + 1
2: L← ‖(y0, · · · , ynk+1)>‖2
3: y← r′′/L · (

∑n−1
i=0 yi x

i, · · · ,
∑n−1
i=0 ynk−n+i x

i)> ∈ RkR
4: return y

Fig. 3: Continuous hyperball uniform sampling

Lemma 2 ([VGS17]). The distribution of the output of the algorithm in
Figure 3 is U(BR,k(r′′)).
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2.5 Challenge sampling

The challenges we use are polynomials c ∈ R with binary coefficients and some
of them are nonzero. The challenge space has size

(
(n
τ)

)
if exactly τ coefficients

are nonzero. To sample such challenges we rely on the SampleInBall algorithm
from Dilithium, which we recall in Fig. 4.

SampleInBall(ρ, τ)

1: initialize c = c0c1 . . . c255 = 00 . . . 0
2: For i = 256− τ to 255
3: j ← {0, . . . , i}
4: ci = cj
5: cj = 1
6: return c

Decode(x ∈ Z)

1: y0 = x
2: i = 0
3: while yi > 0 do
4: ti+1 = symbol(yi mod+ 2n)
5: yi+1 = byi/2nc · f(ti+1) + (yi mod+ 2n)− CDF(ti+1)
6: i← i+ 1
7: m = i− 1
8: return (tm, · · · , t1) ∈ Sm

Fig. 4: Challenge sampling algorithm

For the highest security, however, we require 255 bits of entropy for the
challenge, which cannot be reached with

(
256
τ

)
. To achieve it, we replace

the challenge sampling for the parameter set with the following. Given a
256-bits hash w0 . . . w255 with Hamming weight w, do the following. If w <
128, return

∑255
i=0 wix

i. If w = 128, return
∑255
i=0 wi ⊗ w0x

i. Otherwise,

return
∑255
i=0 wi ⊗ 1xi. Exactly half of all binary polynomials are reachable this

way, which means that the challenge set has size 2255 as desired.

2.6 High and low bits

In our scheme, the signature is comprised of a vector z, which we split in two,
and a polynomial c. The upper part of z is split between its high and low
bits, and the high bits are compressed. The lower part of z is not sent, and
we instead send a so-called hint. Our technique may be reminiscent of the one
from Dilithium [DKL+18], which shares the high-level idea. We first recall the
Euclidean division with a centered remainder.
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Lemma 3. Let a ≥ 0 and b > 0. It holds that

a =

⌊
a+ b/2

b

⌋
· b+ (a mod± b),

and this writing as a = bq + r with r ∈ [−b/2, b/2) is unique.

We define our base decomposition function.

Definition 3 (High and low bits). Let r ∈ Z and α be a power of two.
Successively define r1 = b(r + α/2)/αc and r0 = r mod± α. Finally, define the
tuple:

(LowBits(r, α),HighBits(r, α)) = (r0, r1).

We extend these definitions to vectors by applying them component-wise. We
state that this decomposition lets us recover the original element and bound the
components of the decomposition.

Lemma 4. Let α be a power of two. Let q > 2 be a prime with α|2(q − 1)
and r ∈ Z. Then it holds that

r = α · HighBits(r, α) + LowBits(r, α),

LowBits(r, α) ∈ [−α/2, α/2),

r ∈ [0, 2q − 1] =⇒ HighBits(r, α) ∈ [0, (2q − 1)/α] .

Proof. By Lemma 3, there exists a unique representation

r = b(r + α/2)/αcα+ (r mod± α).

By identifying HighBits(r, α) and LowBits(r, α) in the above equation, we obtain
the first result.

Next, by definition of mod ±, we have that r′ ∈ [−α/2, α/2).

For the second range, since b(r + α/2)/αc is a non-decreasing function, it
suffices to show that b(2q − 1 + α/2)/αc ≤ b(2q − 1)/αc. By assumption on q,
we have (2q − 1 + α/2) ≤ b(2q − 1)/αcα+ α− 1. Dividing by α and taking the
floor yields the result.

ut

We define HighBitsz1(r) = HighBits(r, 256), LowBitsz1(r) = LowBits(r, 256)
and HighBitsvk(r) = HighBits(r, d), LowBitsvk(r) = LowBits(r, d).

High and low bits for hint In order to produce the hint that we send instead
of the lower part of z, we could use the previous bit decomposition. However, as
noted in [DKL+18, Appendix B] in a preliminary version, a slight modification
allows to further reduce the entropy of the hint.

The idea is to pack the high bits in the range [0, 2(q− 1)/αh). This is possible
if we use the range [−αh/2−2, 0) to represent the integers that are close to 2q−1.
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Definition 4 (High and low bits for hint). Let r ∈ Z. Let q be a prime
and αh|2(q − 1) be a power of two. Let m = 2(q − 1)/αh and

r1 = HighBits(r mod+ 2q, αh) and r0 = LowBits(r mod+ 2q, αh).

If r1 = m, let (r′0, r
′
1) = (r0 − 2, 0).

Else, (r′0, r
′
1) = (r0, r1). We define:

(LowBitsh(r),HighBitsh(r)) = (r′0, r
′
1).

As before, we extend these definitions to vectors by applying them component-
wise. We state that this decomposition lets us recover the original element and
bound the decomposition components.

Lemma 5. Let r ∈ Z. Let q be a prime, αh|2(q − 1) be a power of two and
define m = 2(q − 1)/αh. It holds that

r = αh · HighBitsh(r) + LowBitsh(r) mod 2q,

LowBitsh(r) ∈ [−αh/2− 2, αh/2),

HighBitsh(r) ∈ [0,m− 1] .

Proof. Let r ∈ [0, 2q − 1]. Let r0, r1, r′0, and r′1 defined as in Definition 4. The
equality r′0 + r′1 · αh = r0 + r1 · αh mod 2q holds vacuously if r′0 = r0 and r′1 = r1.

If not, then r′0 = r0−2 and r′1 = r1−2(q−1)/αh and r′0+r′1αh = r0+r1αh−2q.
By Lemma 4, we get the first equality.

The second property stems from the second property in Lemma 4. The
modifications to r0 make r′0 lie in the range [−αh/2− 2, αh/2).

The last property stems from the third property in Lemma 4 and the fact
that if r1 = m, then we have r′1 = 0.

ut
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3 Specification

3.1 Key generation

The bimodal rejection sampling relies on having a key pair (A, s) ∈ Rk×(k+`)p ×
Rk+`p such that As = −As mod p. To generate such a pair, following [DDLL13],

we choose p = 2q and aim at As = qj mod 2q for j = (1, 0, . . . , 0)>.

Key generation and encoding To build a key pair, we start from an

MLWE sample b− a = A0s0 + e0 mod q, where A0 ← U(Rk×(`−1)q ), a← U(Rkq )

and (s0, e0)← U(S`−1η × Skη ). For any b = b1 + b0, we define A = (2(a− b1) +
qj|2A0|2Ik) as well as s = (1|s0|(e0 − b0)). One sees that As = qj mod 2q. In
practice, the verification key is then comprised of b1 and the seed that allows
generating A0 and a. The secret key is the seed used to generate s and (A0,a).

It remains to choose the decomposition of b, that we see as an nk-dimensional
vector with coordinates in [0, q − 1]. We choose b0 with coordinates in {−1, 0, 1}
such that if a coordinate of b is odd, then it is rounded to the nearest multiple of 4.
We can then write b = b0 +2b1, where b1 is encoded using dlog2(q)− 1e bits per
coordinate. This is computed coordinate-wise with b0 = (−1)bb/2c mod 2b mod 2,
i.e. one less bit than b. In all of the following, we let (LowBitsvk(b),HighBitsvk(b))
denote (b0,b1). When b is uniform, we notice that the coordinates of b0 roughly
follow a (centered) binomial law with parameters (2, 1/2), which experimentally
leads to smaller choices for β, which we discuss and introduce now.

Rejection sampling on the key A critical step of our scheme is bound-
ing ‖sc‖2, where s is generated as before and c ∈ R is a polynomial with
coefficients in {0, 1} and has less than or equal to τ nonzero coefficients. The
lower this bound is, the smaller the signature is, which in turn leads to harder
forging. In the key generation algorithm, we apply the following rejection condition
for some heuristic value β:

τ ·
m∑
i=1

i-th
max
j
‖s(ωj)‖22 + r ·

(m+1)-th
max
j

‖s(ωj)‖22 ≤
nβ2

τ
,

where m = bn/τc and r = n mod τ . We argue that the left hand side is a bound
on n

τ · ‖sc‖
2
2 and that this condition leads to asserting ‖sc‖2 ≤ β.

Lemma 6. For a binary challenge c ∈ {0, 1}n with hamming weight τ and a
secret s ∈ Sk+`η , n‖cs‖22 is bounded by

τ2 ·
m∑
i=1

i-th
max
j
‖s(ωj)‖22 + r · τ ·

(m+1)-th
max
j

‖s(ωj)‖22,

where m = bn/τc and r = n mod τ .
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Proof. We first rewrite ‖sc‖2 as:

‖sc‖22 =

∑
i |c(ωj)|2 · ‖s(ωj)‖22

n
,

where s(ωj) = (s1(ωj), · · · , sk+`(ωj)), and ωj ’s are the primitive 2n-th roots of
unity. For n = m·τ+r, let m = bn/τc and r = n mod τ . Since

∑n
j=1 |c(ωj)|2 = nτ

and
|c(ωj)|2 = | ωj,1 + · · ·+ ωj,τ |2 ≤ τ2,

we can bound
∑n
j=1 |c(ωj)|2 · ‖s(ωj)‖22 by rearrangement: let m = bn/τc be the

maximum number of |c(ωj)|2’s that can be τ2. By sorting ‖s(ωj)‖2 in a decreasing
order,

‖s(ωσ(1))‖2 ≥ ‖s(ωσ(2))‖2 ≥ · · · ≥ ‖s(ωσ(n))‖2,

where σ is a permutation for the indices, we have

n∑
j=1

|c(ωj)|2 · ‖s(ωj)‖22 ≤
m∑
j=1

|c(ωσ(j))|2 · ‖s(ωσ(j))‖22 +

n∑
j=m+1

|c(ωσ(j))|2 · ‖s(ωσ(m+1))‖22.

Then it reaches the maximum when the m largest ‖s(ωj)‖22’s are multiplied with
the m number of τ2’s. That is,

n∑
j=1

|c(ωj)|2 · ‖s(ωj)‖22 ≤
m∑
j=1

τ2 · ‖s(ωσ(j))‖22 +
( n∑
j=1

|c(ωj)|2 −mτ2
)
· ‖s(ωσ(j))‖22

= τ2 ·
m∑
j=1

‖s(ωσ(j))‖22 + r · τ · ‖s(ωσ(j))‖22.

ut

3.2 Discrete hyperball sampling

Lattice cryptography often relies on Gaussian distributions. As we depart from
this choice; we explain how to sample uniformly on a discrete hyperball, i.e., how
we generate the sample y from Figure 2 with linked to continuous hyperball
uniform sampling in Figure 3.

y← U(B(1/N)R,m(r′))

1: y← U(BR,m(Nr′ +
√
mn/2))

2: if ‖bye‖2 ≤ Nr′, return bye/N
3: else, restart

Fig. 5: Discrete hyperball uniform sampling
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Lemma 7. Let n be the degree of R, M0 ≥ 1, r′,m > 0 and set

N ≥
√
mn

2r′
· M

1/(mn)
0 + 1

M
1/(mn)
0 − 1

.

At each iteration, the algorithm from Figure 5 succeeds with probability ≥ 1/M0.
Moreover, the distribution of the output is U(B(1/N)R,m(r′)).

The proof of this lemma can also be found in Appendix C.

Using Lemma 2, we can conclude that if we use the algorithms in Figures 1, 2, 3,
and 5 and if we can sample from a normal distribution correctly, then the resulting
distribution of z is indeed the uniform sample from the discretized hyperball.
However, if we use floating-point arithmetic for the normal distribution sampling
and Steps 2 and 3 introduce numerical errors. We analyze these errors and give
the required precision for fixed-point Gaussian sampling algorithm to maintain
provable security in Appendix D.

3.3 Signature encoding

To encode a signature, we will split some of its components into low and high
bits. If we correctly choose the number of low bits, they will be distributed
almost uniformly. The high bits on the other hand, will then follow a distribution
with a very small variance and can be considerably compressed with a suitable
encoding. While Huffman coding would be applied on each coordinate at a
time, an arithmetic coding encodes the entire coordinates in a single number.
In contrast to Huffman coding, arithmetic coding gets close to entropy also for
alphabets, where the probabilities of the symbols are not powers of two. We recall
a recent type of entropy coding, named range Asymmetric Numeral systems
(rANS) [Dud13], that encodes the state in a natural number and thus allows
faster implementations. As a stream variant, rANS can be implemented with
finite precision integer arithmetic by using renormalization.

Furthermore, it is possible to avoid arithmetic operations altogether and
realize high-speed implementations using lookup tables (tANS).

Definition 5 (Range Asymmetric Numeral System (rANS) Coding).
Let n > 0 and S ⊆ [0, 2n−1]. Let g : [0, 2n−1]→ Z∩(0, 2n] such that

∑
x∈S g(x) ≤

2n and g(x) = 0 for all x /∈ S. We define the following:

• CDF : S → Z, defined as CDF(s) =
∑s−1
y=0 g(y).

• symbol : Z → S, where symbol(y) is defined as s ∈ S satisfying CDF(s) ≤
y < CDF(s+ 1).

• C : Z× S → Z, defined as

C(x, s) =

⌊
x

g(s)

⌋
· 2n + (x mod+ g(s)) + CDF(s).

Then, we define the rANS encoding/decoding for the set S and frequency g/2n as
in Figure 6.
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Encode((s1, · · · , sm) ∈ Sm)

1: x0 = 0
2: for i = 0, · · · ,m− 1 do
3: xi+1 = C(xi, si+1)
4: Return xm

Decode(x ∈ Z)

1: y0 = x
2: i = 0
3: while yi > 0 do
4: ti+1 = symbol(yi mod+ 2n)
5: yi+1 = byi/2nc · g(ti+1) + (yi mod+ 2n)− CDF(ti+1)
6: i← i+ 1
7: m = i− 1
8: return (tm, · · · , t1) ∈ Sm

Fig. 6: rANS encoding and decoding procedures

Lemma 8 (Adapted from [Dud13]). The rANS coding is correct, and the size
of the rANS code is asymptotically equal to Shannon entropy of the symbols. That
is, for any choice of s = (s1, · · · , sm) ∈ Sm, Decode(Encode(s)) = s. Moreover,
for any positive x and any probability distribution p over S, it holds that∑

s∈S
p(s) log(C(x, s)) ≤ log(x) +

∑
s∈S

p(s) log

(
g(s)

2n

)
+

2n

x
.

Finally, the cost of encoding the first symbol is ≤ n, i.e., for any x ∈ S, we have
log(C(0, s)) ≤ n.

We determine the frequency of the symbols experimen- tally, by executing
the signature computation and collecting several million samples. Finally, we
apply some rounding strategy to compute g such that the average overcost per
coordinate caused by this rounding is almost negligible.

3.4 Specification of HAETAE

Readers who are not familiar with the Fiat-Shamir with Aborts line of work
may first check the uncompressed version of the scheme in Appendix A to get a
uncompressed approach on HAETAE.

We give the description of the signature scheme HAETAE in Figure 7 with
the following building blocks:

• Hash function Hgen for generating the seeds and hashing the messages,
• Hash function H for signing, returning ρ, a seed for challenge sampling,
• Extendable output function expandA for deriving a and Agen from seedA,
• Extendable output function expandS for deriving sgen and egen from seedsk and
countersk,
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• Extendable output function expandYbb for deriving y, b and b′ from seedybb
and counter,

The above building blocks can be implemented with symmetric primitives.
In all of the following sections, we let j = (1, 0, . . . , 0) ∈ Rk. The parameters ρ0
and αh refer to the size of the seed and the compression factor, respectively. The
parameter β is the bound for ‖cs‖, which will be checked by bounding

f(s) := τ ·
m∑
i=1

i-th
max
j
‖s(ωj)‖22 + r ·

(m+1)-th
max
j

‖s(ωj)‖22

by nβ2/τ . The parameters B, B′, and B′′ refer to the radii of hyperballs. At
Step 2 of the Sign algorithm, the variable y0 ∈ RR refers to the first component
of the vector y ∈ Rk+`R . At Step 3 of the Sign algorithm, the vector z ∈ Rk+`R is
decomposed as z = (z1, z2) with z1 ∈ R`R and z2 ∈ RkR. At Step 4 of the Verify
algorithm, the variable z̃0 ∈ R refers to the first component of the vector z̃ ∈ Rk+`.
We assume that q and αh satisfy the assumptions from Lemma 5.

Note that at Step 6 of the Verify algorithm, the division by 2 is well-defined
as the operand is even and defined modulo 2q.

We also give a randomized signing of HAETAE in Figure 8. We observe that
in the randomized version signing process, significant part of signing including
the hyperball sampling algorithms for y can be performed “off-line”, i.e., before
receiving a message M to be signed. It holds for computations such as w = A bye
and HighBitsh(w). In the “on-line” phase of signing, we can use y and the
corresponging pre-computed components by choosing them randomly among the
pre-sampled list.

Lemma 9. We borrow the notations from Figure 7. If we run Verify(vk,M, σ)
on the signature σ returned by Sign(sk,M) for an arbitrary message M and an
arbitrary key-pair (sk, vk) returned by KeyGen(1λ), then the following relations
hold:

1) w = HighBitsh(w),
2) w′j = LSB(by0e) · j = LSB(w) = LSB(w − 2 bz2e).
3) 2bz2e − 2z̃2 = LowBitsh(w)− LSB(w) assuming it holds that B′ + αh/4 + 1 ≤

B′′ < q/2,

Proof. Let m = 2(q − 1)/αh. Let us prove the first statement. By definition
of h, it holds that w1 = HighBitsh(w) mod m. However, the latter part of the
equality already lies in [0,m − 1] by Lemma 5. The first part lies in the same
range as we reduce mod+ m. Hence, the equality stands over Z too.

We move on to the second statement. By considering only the first component
of z = y + (−1)bc · s, we obtain, modulo 2:

z̃0 = bz0e = by0e+ (−1)bc = by0e+ c.

This yields the result. Moreover, considering everywhere a 2 appears in the
definition of A, we obtain that

w = A1bz1e − qcj = (bz0e − c)j mod 2.
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KeyGen(1λ)

1: seed← {0, 1}ρ0
2: (seedA, seedsk,K) = Hgen(seed)
3: (a| Agen) ∈ Rk×`q := expandA(seedA)
4: countersk = 0
5: (sgen, egen) := expandA(seedsk, countersk)
6: b = a + Agen · sgen + egen mod q // b ∈ Rkq
7: (b0,b1) = (LowBitsvk(b),HighBitsvk(b))

8: A = (2(a− b1) + qj| 2Agen| 2Idk) mod 2q // A ∈ Rk×(k+`)
2q

9: s = (1, sgen, egen − b0) // s ∈ Sk+`η

10: if f(s) > nβ2/τ then go to 5
11: return sk = (s,K), vk = (seedA,b1)

Sign(sk,M)

1: µ = Hgen(seedA,b1,M)
2: seedybb = Hgen(K,µ)
3: counter = 0
4: (y, b, b′) := expandYbb(seedybb, counter)
5: w = A bye
6: ρ = H(HighBitsh(w), LSB(by0e), µ)
7: c = SampleInBall(ρ, τ)
8: z = (z1, z2) = y + (−1)bc · s
9: h = HighBitsh(w)− HighBitsh(w − 2 bz2e) mod+ 2(q−1)

αh

10: if ‖z‖2 ≥ B′, then counter++ and go to 4
11: else if ‖2z− y‖2 < B and b′ = 0, then counter++ and go to 4
12: else return σ = (Encode(HighBitsz1(bz1e)), LowBitsz1(bz1e),Encode(h), c)

Verify(vk,M, σ = (x,v, h, c))

1: z̃1 ← Decode(x) · a+ v and h̃ = Decode(h)
2: (a| Agen) = expandA(seedA)
3: A1 = (2(a− 2b1) + qj| 2Agen)

4: w1 = h̃ + HighBitsh(A1z̃1 − qcj) mod+ 2(q−1)
αh

5: w′ = LSB(z̃0 − c)
6: z̃2 = [w1 · αh + w′j− (A1z̃1 − qcj)]/2 mod± q
7: z̃ = (z̃1, z̃2)
8: µ̃ = Hgen(seedA,b1,M)
9: Return (c = SampleInBall(H(w1, w

′, µ̃), τ)) ∧ (‖z̃‖ < B′′)

Fig. 7: Deterministic version of HAETAE

For the last statement, let us use the two preceding results. In particular, we
note the identity

w1 · αh + w′j = w − LowBitsh(w) + LSB(w).

We note that the last two elements have same parity, as the former one has
the same parity as LowBits(w, αh). By Lemma 5 their sum has infinite norm ≤
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Sign(sk,M)

// can be done off-line: using vk, make a list L of (y,w,w1)
1: y← U(B(1/N)R,(k+`)(B))
2: w = A bye
3: w1 = HighBitsh(w)

// can be done on-line: using sk, M and pre-computed (y,w,w1) sampled
// from L
4: µ = Hgen(seedA,b1,M)
5: b, b′ ← {0, 1}
6: c = SampleInBall(H(w1, LSB(by0e), µ), τ)
7: z = (z1, z2) = y + (−1)bc · s
8: h = w1 − HighBitsh(w − 2 bz2e) mod+ 2(q−1)

αh

9: if ‖z‖2 ≥ B′, then
10: go to 5 with resampled (y,w,w1) // resample (y,w,w1)← L
11: else if (‖2z− y‖2 < B) ∧ (b′ = 0), then
12: go to 5 with resampled (y,w,w1) // resample (y,w,w1)← L
13: else return σ = (Encode(HighBitsz1(bz1e)), LowBitsz1(bz1e),Encode(h), c)

Fig. 8: Randomized signing of HAETAE. On/offline signing can accelerate the
signing process. Note that the signing can also be accelerated even if y is sampled
offline alone.

αh/2 + 2. Hence from its definition, it holds that

2z̃2 = 2bz2e − LowBitsh(w) + LSB(w) mod ±2q.

Finally, this identity holds over the integers as the right-hand side has infinite
norm at most 2B′ + αh/2 + 2 < q. ut

Theorem 1 (Completeness). Assume that B′′ = B′ +
√
n(k + `)/2 +

√
nk ·

(αh/4 + 1) < q/2. Then the signature schemes of Figures 7 and 8 are complete,
i.e., for every message M and every key-pair (sk, vk) returned by KeyGen(1λ), we
have:

Verify(vk,M, Sign(sk,M)) = 1.

Proof. We use the notations of the algorithms. We will focus on the deterministic
version in Fig. 7, since Fig. 8 also has almost the same proof. The first and second
equations from Lemma 9 state that ρ = ρ̃ and thus

c = SampleInBall(ρ, τ).
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On the other hand, we use the last equation from the same lemma to bound
the size of z̃. We have:

‖z̃‖ ≤ ‖z‖+ ‖z− bze‖+ ‖bze − z̃‖

≤ B′ +
√
n(k + `) · ‖z− bze‖∞ + ‖bz2e − z̃2‖

≤ B′ +
√
n(k + `)

2
+
√
nk · ‖LowBitsh(w)‖∞

≤ B′ +
√
n(k + `)

2
+
√
nk ·

(αh

4
+ 1
)
.

The definition of B′′ implies that the scheme is correct. ut

3.5 Parameter sets

We instantiate the HAETAE signature scheme to reach the NIST PQC security
levels 2, 3, and 5. The instantiations are set to be at least as secure as the
corresponding parameter sets for Dilithium and Falcon. We use the core-SVP
methodology introduced in [ADPS16], a conservative security estimation method
in lattice cryptography (see Section 5.2 for more details). The names of the
three parameter sets correspond to the core-SVP security figures: HAETAE120,
HAETAE180 and HAETAE260. The parameters are provided in Table ??.

The ring dimension n and the modulus q are set to 256 and 64,513 across
all parameter sets. Our choice of modulus q allows for efficient integer sampling
over Zq. This constraint leads to unexpected estimated 236 bits of LWE security
for HAETAE180. However, if we decrease ` by 1 (this is the parameter that has
the most impact on the LWE security), we obtain only 175 bits of core-SVP
hardness, which is below the target, 180.

Note that increasing k mainly increases the SIS security. Increasing η increases
the LWE security while decreasing the SIS security as it makes the SIS bound
larger and should only be changed for fine-tuning. Our estimations are computed
using a modified version of the Dilithium security script, which we also submit
as part of our submission package.

The variable B′′ denotes the verification bound, which is half of the SIS
bound. It is set significantly smaller than q to avoid potential attacks exploiting
the q-vectors: vectors with coordinates that are multiples of q always belong to
the lattice corresponding to the cryptanalysis, and could potentially be used to
improve lattice reduction attacks.

The figures between parentheses are for the strong unforgeability security
in the case of the randomized signing version of HAETAE (in the deterministic
version, strong and weak unforgeability are the same).
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Parameter set HAETAE-120 HAETAE-180 HAETAE-260
NIST Security level 2 3 5

q 64513 64513 64513
M 6.0 5.0 6.0

Key Rate 0.1 0.25 0.1
β 354.82 500.88 623.72
B 9388.97 17773.21 22343.66
B′ 9382.26 17766.15 22334.95
B′′ 12320.79 21365.10 24441.49

(k, `) (2,4) (3,6) (4,7)
η 1 1 1
τ 58 80 128
αh 512 512 256
d 1 1 0

Forgery
BKZ block-size b 409 (333) 617 (512) 878 (735)
Classical hardness 119 (97) 180 (149) 256 (214)
Quantum hardness 105 (85) 158 (131) 225 (188)

Key-Recovery
BKZ block-size b 428 810 988
Classical hardness 125 236 288
Quantum hardness 109 208 253

Signature size 1463 2337 2908
Public key size 992 1472 2080

Sum 2455 3809 4988
Private key size 1376 2080 2720

Table 2: Parameter choices for 120, 180, 260 bits of core-SVP hardness
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4 Performance analysis

In this section, we report the performance of the C reference implementation of
HAETAE.

4.1 Performance of reference implementation

The C reference implementation of HAETAE can be found on team HAETAE
website: https://kpqc.cryptolab.co.kr.

In Table 3, we give the performance results of the reference implementation
and the sizes. All benchmarks were obtained on one core of an Intel Core i7-10700k,
with TurboBoost and hyperthreading disabled. All cycle counts reported are the
median and average of the cycle counts of 1,000 executions of the respective
functions.

Parameter set KeyGen Sign Verify

HAETAE-120
med 1,384,274 6,253,166 387,594
ave 1,832,973 8,903,852 388,377

HAETAE-180
med 2,333,614 9,472,724 718,010
ave 3,464,004 11,763,246 719,400

HAETAE-260
med 1,693,776 8,989,980 913,378
ave 2,129,737 12,459,046 914,336

Table 3: Median and average cycle counts of 1000 executions for HAETAE. Cycle
counts were obtained on one core of an Intel Core i7-10700k, with TurboBoost
and hyperthreading disabled.

Due to the key and the signature rejection steps, the median and the average
values for KeyGen and Sign, respectively, differ clearly. The two values are much
closer for Verify.

Based on the profiling and benchmarking of subcomponents, we here discuss
the most expensive parts during key generation and signing. During the key
generation, the complex Fast Fourier Transformation, , used for computing f(s),
consumes nearly 50% of the total cycles. Among the components of the signing
process, we remark that the hyperball sampling is the most significant part, using
almost 80% of the total signing cost. It is dominated by randomness sampling,
which uses the extendable output function.

In addition, we expect that the on/offline approach will reduce the (online)
signing time by 12% to 20%, except for the time spent reading from the list.

https://kpqc.cryptolab.co.kr
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5 Security

Unforgeability under Chosen Message Attacks (UF-CMA) is regarded as a standard
security notion for digital signature schemes. The adversary is given the
verification key and has access to a signing oracle to call on (adaptively) chosen
messages. The adversary wins if it forges a valid signature of a new, non-queried
message. Strong Unforgeability under Chosen Message Attacks (SUF-CMA) is a
slightly stronger security notion than UF-CMA: the adversary wins if it forges a
valid signature-message pair that it did not already see.

The concrete SUF-CMA security of HAETAE can be proven in the classical
Random Oracle Model (ROM) under the standard MLWE and MSIS assumptions.
However, since the proof is based on the forking lemma, the reduction is not tight,
and it is not applicable in the Quantum Random Oracle Model (QROM) setting.
First, using the zero-knowledge property of the underlying identification scheme,
Unforgeability under No Message Attacks (UF-NMA) reduces to (S)UF-CMA
security, both in the ROM [AFLT16] and the QROM [KLS18, GHHM21].

As pointed out in [DFPS23] and [BBD+23], the security proof in [KLS18] has
some flaws on their generic reduction in the QROM, however, they also introduce
the fixes to QROM reduction. We therefore base our security proof on the fixed
analysis of [DFPS23].

UF-NMA is directly related to a problem that can be viewed as a “convolution”
of lattice and hash function problems. We call this problem BimodalSelfTargetMSIS.
Similar to the SelfTargetMSIS described in [DKL+18, KLS18], we can analyze the
UF-CMA security based on the MLWE and BimodalSelfTargetMSIS assumptions.
Note that in the ROM, MSIS reduces to BimodalSelfTargetMSIS, but the reduction
is not tight and does not readily extend to quantum adversaries (it relies on
the forking lemma). This said, this non-tightness and limitation to classical
adversaries is not known to reflect any weakness.

For setting parameters, we consider the hardness of MSIS and MLWE for
relevant parameters. Intuitively, the MLWE assumption is used for security against
key-recovery attacks, and the BimodalSelfTargetMSIS used for security against
forgeries is identified to the MSIS assumption.

5.1 Security definition

We introduce the BimodalSelfTargetMSIS assumption and give a classical
reduction from the standard MSIS assumption. BimodalSelfTargetMSIS is a variant
of the SelfTargetMSIS assumption adapted to the bimodal setup.

Definition 6 (BimodalSelfTargetMSISH,n,q,k,`,β). Suppose that H : {0, 1}∗ ×
M→ R2 is a cryptographic hash function. For positive integers q, k, `, a positive
real number β and the dimension n of R, we say that the advantage of an
adversary A solving the search-BimodalSelfTargetMSISH,n,q,k,`,β problem with
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respect to j ∈ Rk2 \ {0} is

AdvBimodalSelfTargetMSIS
H,n,q,k,`,β (A) =

Pr

 0 < ‖y‖2 < β ∧
H(Ay − qcj mod 2q,M) = c

(A0,b)← Rk×(`−1)q ×Rkq ;
A = (−2b + qj| 2A0| 2Idk) mod 2q;

(y, c,M)← A|H(·)〉(A)

 .
In the ROM (resp. QROM), the adversary is given classical (resp. quantum)
access to H.

Theorem 2 (Classical Reduction from MSIS to BimodalSelfTargetMSIS).
Assume that q is odd, H : {0, 1}∗ ×M → R2 is a cryptographic hash function
modeled as a random oracle and that every polynomial-time classical algorithm has
a negligible advantage against MSISn,q,k,`,β. Then every polynomial-time classical
algorithm has negligible advantage against BimodalSelfTargetMSISn,q,k,`,β/2.

Proof (sketch). Consider a BimodalSelfTargetMSISn,q,k,`,β/2 classical algorithmA
that is polynomial-time and has classical access to H. If A|H(·)〉(A) makes Q
hash queries H(wi,Mi) for i = 1, · · · , Q and outputs a solution (y, c,Mj) for
some j ∈ [Q], then we can construct an adversary A′ for MSISn,q,k,`,β as follows.

The adversary A′ can first rewind A to the point at which the i-th query was
made and reprogram the hash as H(wj ,Mj) = c′( 6= c). Then, with probability
approximately 1/Q, algorithm A will produce another solution (y′, c′,Mj). We
then have

Ay − qcj = zj = Ay′ − qc′j mod 2q and ‖y‖2, ‖y‖2 < β/2.

As q is odd, we have A(y − y′) = (c− c′)j mod 2. The fact that c′ 6= c implies
that the latter is non-zero modulo 2, and hence so is y− y′ over the integers. As
it also satisfies (−b| A0| Idk) · (y− y′) = 0 mod q and ‖y− y′‖ < β, it provides
a MSISn,q,k,`,β solution for the matrix (−b| A0| Idk), where the submatrix
(−b| A0) ∈ Rk×`q is uniform. ut

The above classical reduction from MSIS to BimodalSelfTargetMSIS is very
similar to the reduction from MSIS to SelfTargetMSIS introduced in [DKL+18]
and is similarly non-tight. Moreover, since the reduction relies on the forking
lemma; it cannot be directly extended to a quantum reduction in the QROM.

Security definitions. We recall the definitions of the above security notions
for digital signatures.

Definition 7 (Unforgeability under No Message Attacks (UF-NMA)).
For a signature scheme S = (KeyGen, Sign, Verify), the advantage of a UF-NMA
adversary A is defined as:

AdvUF-NMA
S (A) = Pr [Verify(vk,M, σ) = 1| (sk, vk)← KeyGen; (M,σ)← A(vk)] .
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Definition 8 (Unforgeability under Chosen Message Attacks (UF-CMA)).
Let S = (KeyGen, Sign, Verify) be a signature scheme. A UF-CMA adversary A
has access to the verification key and a signing oracle to make adaptive queries.
Let the queried messages and the received signatures be (Mi, σi) for i = 1, · · · , Q.
At the end of the experiment, it outputs a message-signature pair (M∗, σ∗). Then
the advantage of A is defined as:

AdvUF-CMA
S (A) = Pr

[
M∗ /∈ {Mi}i∈[Q] ∧ (sk, vk)← KeyGen;

Verify(vk,M∗, σ∗) = 1 (M∗, σ∗)← ASign(sk,·)

]
.

Definition 9 (Strong Unforgeability under Chosen Message Attacks
(SUF-CMA)). Let S = (KeyGen, Sign, Verify) be a signature scheme. An
SUF-CMA adversary A has access to the verification key and a signing oracle to
make adaptive queries. Let the queried messages and the received signatures be
(Mi, σi) for i = 1, · · · , Q. At the end of the experiment, it outputs a message-
signature pair (M∗, σ∗). Then the advantage of A is defined as:

AdvSUF-CMA
S (A) = Pr

[
(M∗, σ∗) /∈ {(Mi, σi)}i∈[Q] (sk, vk)← KeyGen;
∧ Verify(vk,M∗, σ∗) = 1 (M∗, σ∗)← ASign(sk,·)

]
.

HAETAE achieves UF-CMA security in (Q)ROM, assuming MLWE and
BimodalSelfTargetMSIS are hard.

Theorem 3 (UF-CMA Security of HAETAE in the QROM). Let B′ ≥ (k +
`)n/(2e

√
π)qk/(k+`). Then HAETAE in 7 is UF-CMAsecure in the QROM.

Proof (sketch). The proof relies on the analysis of [DFPS23], which reduces
UF-CMAsecurity to UF-NMAsecurity, where an adversary is not allowed to make
signing queries. This analysis requires that the commitment min-entropy is high
and the underlying Σ-protocol is Honest-Verifier Zero-Knowledge (HVZK). The
latter is proved by providing a simulator for non-aborting transcripts and proving
that the distribution of bye has sufficiently large min-entropy.

Commitment min-entropy. We first claim that the underlying Σ-protocol has
large commitment min-entropy. Indeed, LSB(y0) is part of the initial commitment,
and has min-entropy n.

HVZK. Next, we show that the underlying Σ-protocol satisfies the HVKZ
property. To do so, we follow the strategy from [DFPS23, Section 4], which
studies the simulation of non-aborting transcripts and applies the leftover hash
lemma when simulating aborting transcripts. We propose the following simulator
in Figure 9. On input a challenge c, it runs A(0), and if it fails, it samples a
uniform commitment and no answer.

(i) Simulating non-aborting transcripts. When a sample is accepted, Lemma 1
states that the simulator follows exactly the same distribution as the real
aglorithm.

(ii) High min-entropy for source distribution. When a sample is aborted, the
distribution of bye has sufficiently high min-entropy to apply [DFPS23, Lemma 4]
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Sim(A, c) :

1: y← U(B(1/N)R,m(r′))
2: w← (HighBitsh(Abye), LSB(y0))
3: b← U({0, 1})
4: z← y + (−1)bv
5: u← U(Rkq )
6: u0 ← U(R2)
7: w̃← (HighBitsh(2u + qju0), u0)
8: return (w, c, z) with probability p(z), else (w̃, c,⊥)

Fig. 9: HAETAE simulator

(we can first consider not applying high and least significant bits and adding them
later for free thanks to the data processing inequality of the statistical distance).
Indeed, the distribution has min-entropy log((B′

√
π)n(k+`)/(n(k + `)/2)!) as n

is even. Setting B′ ≥ (k + `)n/(2e
√
π)qk/(k+`) · 2 log(1/ε) is then enoguh to

adapt [DFPS23, Theorem 1] and show that the output of the simulator is whithin
statistical distance ε to the distribution of a real transcript.

These two properties allow us to apply [DFPS23, Theorem 4] to reduce the
SUF-CMA security to UF-NMA security.

Proving UF-NMA security. Finally, we note that the UF-NMA security game
is exactly the problem defined in Definition 6, up to replacing the verification
key by an uniform matrix (still in HNF form), which is done under the MLWE
assumption.

5.2 Cost of known attacks

For the concrete security analysis, we list the best known lattice attacks and
consider their costs for attacking HAETAE.

All the best known attacks rely on the Block–Korkine–Zolotarev (BKZ) lattice
reduction algorithm [SE94, CN11, HPS11]. The BKZ algorithm is a lattice basis
reduction algorithm that repeatedly uses a Shortest Vector Problem (SVP) solver
in small-dimensional projected sublattices. The dimension b of these projected
sublattices is called the block-size. BKZ with block-size b hence relies on an
SVP solver in dimension b. The block-size drives the cost of BKZ and determines
the resulting basis’s quality. It provides a quality/time trade-off: If b gets larger,
better quality will be guaranteed, but the time complexity for the SVP solver
will exponentially increase. The time complexity of the b-BKZ algorithm is the
same as the SVP solver for dimension b, up to polynomial factors. Hence the
time complexity differs depending on the SVP solver used. The most efficient
SVP algorithm uses the sieving method proposed by Becker et al. [BDGL16]
which takes time ≈ 20.292b+o(b). The fastest known quantum variant is proposed
by Chailloux and Loyer in [CL21] and takes time ≈ 20.257b+o(b).

Based on the BKZ algorithm, we will follow the core-SVP methodology
from [ADPS16] and as in the subsequent lattice-based schemes [ABB+19,
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DKL+18, FHK+17, DKSRV18, BDK+18]. It is regarded as a conservative way
to set security parameters. We ignore the polynomial factors and the o(b) terms
in the exponents of the run-time bounds above for the time complexity of the
BKZ algorithm.

We consider the primal attack and the dual attack for MLWE, and the plain
BKZ attack for MSIS and BimodalSelfTargetMSIS problems. We remark that
any MLWEn,q,k,`,η instance can be viewed as an LWEq,nk,n`,η instance, and also
any MSISn,q,k,`,β can be viewed as an SISq,nk,n`,β instance. Even though the
MLWE and MSIS problems have some extra algebraic structure compared to the
LWE and SIS problems, we do not currently know how to exploit it to improve
the best known attacks. For this reason, we estime the concrete hardness of the
MLWE and MSIS problems over the structured lattices as the concrete hardness
of the corresponding LWE and SIS problems over the unstructured lattices.

We summarize the costs of the known attacks in Table 4. In the table, the
required block-sizes for BKZ and the costs of the attacks in core-SVP hardness are
given, estimated by the python script we submitted to the KpqC competition with
this document. It is a modification of the security estimator of Dilithium [DS20].
The parameters for MLWE and MSIS problems are chosen based on Theorems 2
and 3. The numbers in parentheses are for the SUF-CMA security of randomized
HAETAE (in the case of the deterministic signature, strong and weak unforgeability
are the same). All costs are rounded downwards.

Parameter sets HAETAE120 HAETAE180 HAETAE260

Target security 120 180 260

BKZ block-size b to break SIS 409 (333) 617 (512) 878 (735)
Classical hardness 119 (97) 180 (149) 256 (214)
Quantum hardness 105 (85) 158 (131) 225 (188)

BKZ block-size b for primal attack 431 820 1001
Classical hardness 126 239 292
Quantum hardness 110 210 257

BKZ block-size b for dual attack 428 810 988
Classical hardness 125 236 288
Quantum hardness 109 208 253

Table 4: Core-SVP hardness for the best known attacks

Primal attack. Given an LWE instance (A,b) ∈ Zk×`q × Zkq , we first define

the lattices Λm = {v ∈ Z`+m+1 : Bv = 0 mod q} for all m ≤ k, where B =(
A[m]| Idm| b[m]

)
∈ Zm×(`+m+1)

q , A[m] is the uppermost m× ` sub-matrix of A

and b[m] is the uppermost m-dimensional sub-vector of b. As (A,b) ∈ Zk×`q ×Zkq
is an LWE instance, there exist s and e short such that b = As + e. This implies
that (s| e| − 1) is a short vector of Λm. The primal attack consists in running
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BKZ on Λm to find short vectors in Λm. The variable m is optimized to minimize
the cost of the attack.

Dual attack. Given an LWE instance (A,b) ∈ Zk×`q × Zkq , we first define the

lattices Λ′m = {(u,v) ∈ Zm × Z` : A>[m]u + v = 0 mod q} for all m ≤ k,

where A[m] is the uppermost m× ` sub-matrix of A. If (u,v) is a short vector

in Λ′m, then u>b = v>s+u>e[m] is short if b = As+e for short vectors s and e,
and is uniformly distributed modulo q if b is uniform and independent from A
(here e[m] refers to the uppermost m-dimensional sub-vector of e). This provides
a distinguishing attack. The dual attack consists in finding a short non-zero
vector in the lattice Λ′m using BKZ. The variable m is optimized to minimize
the cost of the attack.

SIS attack. To analyze the hardness of BimodalSelfTargetMSIS, we analyze
the hardness of the corresponding MSIS. Intuitively, if we assume that H is a
cryptographic hash, then the input structure will not help find the preimage. So
we can assume that M is fixed. Then the problem turns into finding the preimage
x of c with respect to H(·,M) and then finding y satisfying x = Ay − qcj
mod 2q. Apart from the first step, if we have the preimage c, then the second step
will be turned into finding y′ satisfying (2b| A0| Idk) ·y′ = t mod q, for a known
vector t over Rq. Here, y′ is defined as y′ = ((y0 − x′0)/2, y1, · · · , yk+`−1)> and
t = 2−1 · x + x′0b mod q, where x′0 = (x0 + c mod 2) which actually decides
the LSB of y0. Also, ‖y′‖2 is bounded by the same bound used for ‖y‖2. This
implies that solving BimodalSelfTargetMSIS is at least as hard as solving MSIS
with the same norm bound or finding the preimage of a hash as an attack
perspective. However, for the hardness of BimodalSelfTargetMSIS problem, we
will analyze it more conservatively, as the hardness of MSIS problem with a
twice larger norm bound, taking into account the classical reduction from MSIS
to BimodalSelfTargetMSIS in Theorem 2. We analyze the best known attacks
for SIS problem, for both MSIS and BimodalSelfTargetMSIS problems that the
unforgeability of our signature scheme relies on.

Given an SIS instance A ∈ Zk×`q with a bound β, we define the lattices
Λ′′m = {u ∈ Zm : Bu = 0 mod q} for all m ≤ k + `, where B is the k ×m
leftmost sub-matrix of (A| Idk). Then a short non-zero vector in the lattice Λ′′m
is a solution to the SIS problem. Once more, we use BKZ and optimize the choice
of m.

Note that if β > q, then there are some trivial non-zero solutions to
SIS problem such as (q, 0, · · · , 0) with `2-norm < β. Depending on the parameters,
the security could be affected by some existing attacks [DKL+18]. We choose the
prime q larger than the MSIS bound β to avoid such weaknesses.



30 J.H. Cheon et al.

6 Conclusion

HAETAE follows the Fiat-Shamir with Abort design for lattice-based signatures.
Our goal was to keep as much as possible from the conceptual simplicity of
Dilithium and in particular avoid complex rejection conditions, while pushing
the scheme in a more efficient direction regarding signature size. Overall, this
leads to a simplicity/compactness compromise between Dilithium and Falcon,
both standardized in the NIST PQC process.

HAETAE is a scheme with shorter signatures than Dilithium and that is easier
to implement and protect against side-channel attacks than Falcon or Mitaka.
We believe that the advantages we gain from this compromise outbalance the
extra complications in signing we introduced. Indeed, while our scheme is not as
compact as Falcon or Mitaka, our gain of 30% to 40% on signature size compared
to Dilithium justifies having a scheme that is somewhat harder to implement.

Future works and directions. We believe that our signature scheme provides
an interesting in-between between the two selected candidates of the NIST post-
quantum cryptography projects. However, our distribution choice is unusual in
lattice-based cryptography. This means in particular that we need to develop
specific tools to handle this change. We give here a few directions that we are
currently exploring in order to improve HAETAE.

Theoretical work. First, we are looking into the sampling algorithm for y. As of
now, the algorithm description (see Figure 5) considers the computations over
large scale factor for fixed-point arithmetic. We are studying how to reduce the
size of the scale factor, for a better performance.

In addition, while our choice of distribution is new, we note that the
cryptanalyses approach we considered also apply to Dilithium, and have hence
been well-studied already. It is however different when one considers leakage, as
the signing algorithms differ significantly. We would like to better understand
this aspect.

Implementation work. First, we are optimizing the current implementation, as
there are some more rooms yet.

Second, we will also explore implementations with other hash function
instantiations, to accelerate this performance critical component. In contrast to
NIST, the Korean post-quantum cryptography competition does not restrict the
selection of symmetric primitives and thus provides more flexibility for HAETAE
compared to Dilithium.

We are also considering side-channel resistance of the scheme. We intend to
make a masked reference implementation of HAETAE.
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Damien Stehlé were supported by the AMIRAL ANR grant (ANR-21-ASTR-
0016), the PEPR quantique France 2030 programme (ANR-22-PETQ-0008)



HAETAE 31

and the PEPR Cyber France 2030 programme (ANR-22-PECY-0003). Tim
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LS15. Adeline Langlois and Damien Stehlé. Worst-case to average-case reductions
for module lattices. Des. Codes Cryptogr., 75(3):565–599, 2015.

Lyu09. Vadim Lyubashevsky. Fiat-Shamir with aborts: Applications to lattice
and factoring-based signatures. In Mitsuru Matsui, editor, Advances in
Cryptology – ASIACRYPT, pages 598–616. Springer, 2009.

Lyu12. Vadim Lyubashevsky. Lattice signatures without trapdoors. In David
Pointcheval and Thomas Johansson, editors, Advances in Cryptology –
EUROCRYPT, pages 738–755. Springer, 2012.

Pre17. Thomas Prest. Sharper bounds in lattice-based cryptography using the
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A Uncompressed HAETAE

In this appendix, we present HAETAE without its compression step. Readers who
are not familiar with the Fiat-Shamir with Aborts line of work may find it easier
to read this version first. It highlights the use of bimodal rejection sampling
applied to the Fiat-Shamir with Aborts paradigm.

The key generation algorithms ensures that As = qj mod 2q, while also
putting A in a “close to Hermite Normal Form”. Namely, instead of the right
part of A being Idk, it is 2Idk. This subtlety impacts the compression design, in
the uncompressed version of HAETAE.

The signature for a message M consists of c = H(Abye mod 2q,M) and z =
bye±cs. Sometimes, the vector z is rejected and the signing procedure is restarted.
Note that Az = Abye+ qcj mod 2q, independently of the sign that was chosen
for cs. The verification step then checks the consistency of the pair (z, c) and the
smallness of z.

KeyGen(1λ)

1: Agen ←Rk×(`−1)
q and (sgen, egen)← S`−1

η × Skη
2: b = Agen · sgen + egen ∈ Rkq
3: A = (−2b + qj |2Agen |2 Idk)
4: s = (1, s>gen, e

>
gen)
>

5: if f(s) > nβ2/τ then restart
6: return sk = (A, s) and vk = A

Sign(sk,M)

1: y← U(B(1/N)R,(k+`)(B))
2: w← A bye
3: c = H(w,M) ∈ R2

4: z = y + (−1)bc · s for b← U({0, 1})
5: if ‖z‖2 > B′, then restart
6: else if ‖2z− y‖2 < B, then restart with probability 1/2
7: return σ = (bze, c)

Verify(vk,M, σ = (z̃, c))

1: w̃ = Az− qcj mod 2q

2: return ( c = H(w̃,M) ) ∧
(
‖z̃‖ < B +

√
n(k+`)

2

)

Fig. 10: High-level description of uncompressed HAETAE

B Min-entropy

To bound the UF-CMA and SUF-CMA advantage of HAETAE, we give a lower
bound of the min-entropy of the underlying identification protocol. The underlying
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identification protocol has ε bits of min-entropy if

Pr
(pk,sk)

[
∀(w, x) : Pr

y

[
(HighBitsh(Abye), LSB(by0e)) = (w, x)

]
≤ 2−ε

]
≥ 1− 2−ε,

where (pk, sk)← KeyGen and y← U(B(1/N)R,(k+`)(B)). We note that LSB(by0e)
is a binary vector of length n and is uniform. Thus, the inner probability is (very
loosely) bounded by 2−n regardless of the choice of (pk, sk). Hence we obtain at
least 256 bits of min-entropy in all of our parameter sets.

C Discretizing Hyperballs

C.1 Useful Lemma

We will rely on the following claim.

Lemma 10. Let n be the degree of R. Let m,N, r > 0 and v ∈ Rm. Then the
following statements hold:

1. |(1/N)Rm ∩ BR,m(r)| = |Rm ∩ BR,m(Nr)|,
2. |Rm ∩ BR,m(r,v)| = |Rm ∩ BR,m(r)|,
3. Vol(BR,m(r −

√
mn/2)) ≤ |Rm ∩ BR,m(r)| ≤ Vol(BR,m(r +

√
mn/2)).

Proof. For the first statement, note that we only scaled (1/N)Rm and BR,m(r)
by a factor N . For the second statement, note that the translation x 7→ x− v
maps Rm to Rm.

We now prove the third statement. For x ∈ Rm, we define Tx as the hypercube
of RmR centered in x with side-length 1. Observe that the Tx’s tile the whole
space when x ranges over Rm (the way bounderies are handled does not matter
for the proof). Also, each of those tiles has volume 1. As any element in Tx is at
Euclidean distance at most

√
mn/2 from x, the following inclusions hold:

BR,m(r −
√
mn/2) ⊆ ∪x∈Rm∩BR,m(r)Tx ⊆ BR,m(r +

√
mn/2).

Taking the volumes gives the result. ut

C.2 Proof of Lemma 1

Proof. Figure 2 is the bimodal rejection sampling algorithm applied to the
source distribution U((1/N)Rm∩BR,m(r′)) and target distribution U((1/N)Rm∩
BR,m(r)) (see, e.g., [DFPS22]). For the result to hold, it suffices that the support
of the shift of the source distribution by v is contained in the support of the
target distribution. This is implied by r′ ≥

√
r2 + t2.

We now consider the number of expected iterations, i.e., the maximum ratio
between the two distributions. To guide the intuition, note that if we were to
use continuous distributions, the acceptance probability 1/M ′ would be bounded
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by 1/M . In our case, the acceptance probability can be bounded as follows (using
Lemma 10):

1

M ′
=
|(1/N)Rm ∩ BR,m(r)|

2|(1/N)Rm ∩ BR,m(r′)|
=
|Rm ∩ BR,m(Nr)|

2|Rm ∩ BR,m(Nr′)|

≥ Vol(BR,m(Nr −
√
mn/2))

2Vol(BR,m(Nr′ +
√
mn/2))

=
1

2

(
Nr −

√
mn/2

Nr′ +
√
mn/2

)mn
.

It now suffices to bound the latter term from below by 1/(cM) = 1/(2c(r′/r)mn).
This inequality is equivalent to:

c ≥ 1

2
·
(

r

r −
√
mn/(2N)

)mn
·
(
r′ +
√
mn/(2N)

r′

)mn
,

and to:

N ≥ 1

c1/(mn) − 1
·
√
mn

2

(
c1/(mn)

r
+

1

r′

)
,

which allows to complete the proof. ut

C.3 Proof of Lemma 7

Proof. Let y ∈ BR,m(Nr′ +
√
mn/2) and set z = bye. Note that z is sampled

(before the rejection step) with probability

Vol(Tz ∩ BR,m(Nr′ +
√
mn/2))

Vol(BR,m(Nr′))
,

where Tz is the hypercube of RmR centered in z with side-length 1. By the triangle
inequality, this probability is equal to 1/Vol(BR,m(Nr′ +

√
mn/2) when z ∈

BR,m(Nr′). Hence the distribution of the output is exactly U(Rm ∩BR,m(Nr′)),
as each element is sampled with equal probability and as the algorithm almost
surely terminates (its runtime follows a geometric law of parameter the rejection
probability).

It remains to consider the acceptance probability, which is:∑
y∈Rm∩BR,m(Nr′) Vol(Ty ∩ BR,m(Nr′ +

√
mn/2))

Vol(BR,m(Nr′ +
√
mn/2))

.

By the triangle inequality and Lemma 10, it is

|Rm ∩ BR,m(Nr′)|
Vol(BR,m(Nr′ +

√
mn/2))

≥
(
Nr′ −

√
mn/2

Nr′ +
√
mn/2

)mn
.

Note that by our choice of N , this is ≥ 1/M0. ut
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D Fixed-Point Sampling

In this appendix, we explain how to sample from the discretized hyperball
distribution using fixed-point arithmetic.

We first describe the representation of numbers and operations. A fixed-point
number in precision p will consist in a p-bit signed integer k ∈ Z ∩ [−2p−1, 2p−1)
along with an implicit scaling exponent e: the represented number is x = k ·2e−p ∈
[−2e−1, 2e−1). The data can for example be stored in a p-bit integer in two’s
complement representation. The scaling exponent e is not stored, it only exists
on paper. For convenience, a precision p fixed-point number x with implicit
exponent e will be referred to as a (p, e)-number.

When performing arithmetic operations on fixed-point numbers, particular
care must be taken with overflows: in the analysis, we make sure that during
the algorithm execution, any (p, e)-number x will satisfy |x| < 2e−1. The
following assumes no overflow occurs. We can add, subtract and negate (p, e)-
numbers exactly (note that we only consider the situation where the operands
of those operations share the same exponent). We assume that we can multiply
(p, e0)-number x0 with a (p, e1)-number x1 into a (p, e×)-number x× as if the
multiplication was exact and then rounded to a nearest representable number.
Finally, we assume that we can compute an inverse square-root of a (p, e)-
number x into a (p, e′)-number y with possibly slightly more error than that.
This is summarized as follows:

x0 ⊕ x1 = x0 + x1; x0 	 x1 = x0 − x1; 	x = −x;

|(x0 ⊗e×e0,e1 x1)− (x0 · x1)| ≤ 2e×−p−1; |(1/
√
·)ete − 1/

√
x| ≤ 2et−p.

For the sake of simplicity, we fix the precision p to 128 once and for all and never
perform operations with numbers of different precisions.

D.1 Gaussian samples

Our hyperball-uniform sampler relies on an algorithm that samples from the
continuous Gaussian distribution. In our fixed-point sampling, we will make
do with fixed-point approximations to samples from the continuous Gaussian
distribution. Instead of sampling from the continuous Gaussian distribution and
rounding, we sample from the discrete Gaussian distribution. For the discrete
Gaussian sampler, we can for example rely on [BBE+19].

Lemma 11. Let σ > 0. Let DZ,σ (resp. Dσ) be the distribution D over Z
(resp. R) such that D(k) ∼ exp(−k2/(2σ2)) for all k ∈ Z (resp. k ∈ R). Then we
have:

Pr
k←DZ,σ

[|k| ≥ 14 · σ] ≤ 2−140 and max
|k|≤14·σ

DZ,σ(k)

bDσe(k)
≤ 1

1− 8/σ
.

Note that the statement could be rephrased using the smooth Rényi divergence
introduced in [DFPS22].
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Proof. Using the discrete Gaussian tail bound from [Lyu12, Lemma 4.4], the
weight of DZ,σ out of the interval [−14 · σ, 14 · σ] is ≤ 2−140. Using the Poisson
Summation Formula, we have that:

∀k ∈ Z, DZ,σ(k) ≤ exp(−k2/(2σ2))

σ
√

2π
.

Further, for k ∈ Z ∩ [−14 · σ, 14 · σ], the following inequalities hold:

bDσe(k) =
1

σ
√

2π

∫ k+1/2

k−1/2
exp(−x2/(2σ2))dx

≥ exp(−k2/(2σ2))

σ
√

2π
· exp(−(|k|+ 1/4)/(2σ2))

≥ exp(−k2/(2σ2))

σ
√

2π
·
(
1− |k|+ 1/4

2σ2

)
≥ exp(−k2/(2σ2))

σ
√

2π
·
(
1− 8

σ

)
.

This completes the proof. ut

We will take σ = 2124 and view the sample from DZ,σ as a (128, 6)-number
obtained as the rounding of a perfect continuous Gaussian sample. Lemma 11
implies that a signature forger for the imperfect Gaussian sampler succeeds with
essentially the same probability with the ideal Gaussian sampler.

D.2 From Gaussian samples to approximate hyperball-uniforms

In the following, we assume that we have access to arbitrarily many statistically
independent (p, e)-numbers yi that approximate (perfect) samples yi from D1 =
N (0, 1). We first consider the algorithm of Figure 3 with radius 1. We apply it
using such yi’s and fixed-point arithmetic, with appropriately chosen implicit
exponents for each step. We show that the vector y output by the approximate
algorithm is close to the vector y output by the exact algorithm. As y is uniformly
distributed in a hyperball, the computed vector y is an approximation to such a
sample.

We first bound the quantities involved during the computations. These bounds
are for the exact quantities. To avoid overflows, we actually need them for the
corresponding computed quantities. We will see later that as the numerical errors
are low, the bounds still essentially hold. The bounds are probabilistic, and hold
with probability extremely close to 1.

Lemma 12. Let dmin = 6 ·256 + 2 and dmax = 11 ·256 + 2. The following bounds
hold for all d ∈ [dmin, dmax]:

Pr
y←D1

[|y| ≥ 24] < 2−188,
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Pr
yi←D1

∀i∈[d]

[‖y‖2 ≥ 212] < 2−144, Pr
yi←D1

∀i∈[d]

[‖y‖2 ≤ 29] < 2−144.

Pr
z←U(Bd−2(1))

[|z1| ≥ 2−2] < 2−150.

Proof. The first probability is 1− erf(24/
√

2). The two others can be bounded
the Laurent-Massart bounds for the chi-squared distribution, i.e., for all d, t:

Pr
yi←D1

∀i∈[d]

[‖y‖2 ≥ d+ 2
√
dt+ 2t] ≤ exp(−t),

Pr
yi←D1

∀i∈[d]

[‖y‖2 ≤ d− 2
√
dt] ≤ exp(−t).

For the last bound, we use [DFPS22, Lemma A.13]. The probability is
exactly I1−1/η2((d+ 1)/2, 1/2) where I refers to the regularized incomplete Beta
function and 1/η is probabilistic magnitude upper bound. The results follow from
numerical computations. ut

Throughout the execution of the approximate version of the algorithm of
Figure 3, we fix the precision to p ≥ 64. The implicit exponents vary depending
on the algorithm step: the yi’s are represented by (p, 5)-numbers, their squares
by (p, 13)-numbers, the squared-norm ‖y‖2 by a (p, 13)-number, the inverse-
norm 1/‖y‖ by a (p,−3)-number and the output coordinates on (p,−1)-numbers.

Assume that we have |yi − yi| ≤ ε0 for all i, for some ε0 ≥ 2−p+5/2 = 2−p+4.
To avoid overflows of yi’s, it suffices that |yi| ≤ 24 − 2−p+5 − ε0. The first bound
from Lemma 12 still holds for any ε0 ≤ 2−5.

We now consider the computations of the approximations y2i ’s to the y2i ’s.
We have: ∣∣∣y2i − y2i ∣∣∣ ≤ |(yi ⊗13

5,5 yi)− yi2|+ |yi − yi| · |yi + yi|

≤ 2−p+12 + |yi − yi| · [|yi − yi|+ 2|yi|]
≤ 2−p+12 + 26 · ε0.

As addition is exact, we obtain:∣∣∣‖y‖2 − ‖y‖2∣∣∣ ≤ dmax · (2−p+12 + 26 · ε0) =: ε1.

To avoid overflow of ‖y‖2 and hence of the y2i ’s, it suffices that ‖y‖2 ≤ 212 −
2−p−13 − ε1. The second bound from Lemma 12 still holds for any ε0 ≤ 2−5.
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We continue with the inverse square root computation. The following holds:∣∣∣∣1/‖y‖ − 1

‖y‖

∣∣∣∣ ≤
∣∣∣∣∣(1/√·)−313 (‖y‖2)− 1

‖y‖

∣∣∣∣∣+

∣∣∣∣∣ 1

‖y‖
− 1

‖y‖

∣∣∣∣∣
≤ 2−p−3 +

|‖y‖2 − ‖y‖2|
2[‖y‖2 − |‖y‖2 − ‖y‖2|]3/2

≤ 2−p−3 +
ε1

2[29 − ε1]3/2

≤ 2−p−3 + 2−15(1 + 2−1)ε1 =: ε2,

where the last inequality holds for any ε0 ≤ 2−15. To avoid overflow of 1/‖y‖, it
suffices that 1/‖y‖ ≤ 2−4 − 2−p−3 − ε2. The third bound from Lemma 12 still
holds for any ε0 ≤ 2−15.

We finally evaluate the accuracy of the output vector z with respect to z :=
(y1, . . . , yd)

>/‖y‖2. We have, for all i:∣∣∣zi − zi∣∣∣ ≤ ∣∣∣yi ⊗−15,−3 1/‖y‖ − yi · 1/‖y‖
∣∣∣+
∣∣∣yi · 1/‖y‖ − yi/‖y‖∣∣∣

≤ 2−p−2 +
∣∣∣1/‖y‖ − 1/‖y‖

∣∣∣ · |yi|+ |yi − yi|/‖y‖
≤ 2−p−2 + 25 · ε2 + 2−4 · ε0 =: ε3.

To avoid overflow of zi, it suffices that |zi| ≤ 2−2− 2−p−3− ε3. The fourth bound
from Lemma 12 still holds for any ε0 ≤ 2−20.

Note that ε3 is of the order of 2142−p. This is a crude upper bound, as it
assumes that errors are always in the same direction.

D.3 Using Approximate Hyperball-Uniforms

We consider the algorithm from Figure 5. Step 2 is performed exactly. For
Step 1, we use a sample z obtained as described in the previous subsection, and
multiply it by a radius r′′ that we assume to be given as a 64-bit fixed-point
arithmetic number. Given z, this induces a change of the implicit exponent,
and an additional tiny error term. As zi belongs to (−1/4, 1/4) and is within ε4
from its corresponding zi, we can prove that r′′ · zi belongs to (−r/4, r/4) and is
within r′′ · (ε4 + 2−63) from its corresponding r′′ · zi.

Let t denote the rounded vector at Step 2. When rounded as in Step 2,
both r′′ · zi and r′′ · zi result in the same vector t when the distance from r′′ · zi
to Z ·N is < N/2− (ε4 + 2−63). Let Dideal

contained be the distribution over Zmn∩B(r′)
of the rounded vector t at Step 2, when the whole rounding hypercube is
contained in the initial hyperball. Let Dreal

contained be the analogous distribution for
the approximate version of the algorithm. From the discussion above, we have,
for all t ∈ Zmn :

Dreal
contained(x)

Dideal
contained(x)

≥
(

1− 2r′′(ε4 + 2−63)

N

)mn
.



42 J.H. Cheon et al.

Here we want to use [Pre17, Lemma 3]. We also need an upper bound
counterpart to the above. For usability for up to 267 samples via Rényi divergence
arguments, it suffices that the relative error δ satisfies ≈ 2−37. In practice, we
will be using Nr′ ∈ [225, 228) as the sampling radius: if the sample is larger than
that, we will not keep it.

D.4 Rejection Sampling with Approximate Distribution

In this subsection, we discuss what happens when we replace the ideal distribution
used as a source for the rejection sampling by the real distribution.

Lemma 13. Let v a vector, M > 0 and P i, Qi, Qr be three probability
distributions such that:

R∞(Qi‖Qr) < +∞ and R∞(Qr‖Qi) < +∞ and R∞(P i‖Qi±v) ≤M.

Then if we use the bimodal rejection sampling strategy for Qi and P i with Qr as
a source, the resulting final distribution P r is such that

R∞(P r‖P i) ≤ R∞(Qi‖Qr)R∞(Qr‖Qi).

Proof. Let pi and pr denote the acceptance probability of a single step of
rejection sampling in the ideal and real setup, respectively. As each is related
to a single random variable following either Qi or Qr and then follows the same
process, it holds that

pi

pr
≤ R∞(Qi‖Qr).

Moreover, note that pi = 1/M . Hence, we have

P r : x 7→ Qr(x− v) +Qr(x + v)

Qi(x− v) +Qi(x + v)
· P

i(x)

M · pr
.

The first fraction is the ratio of the probability of the event “Get a y such
that y ± v = x” in the real (numerator) and ideal (denominator) setup. Hence,
this ratio is bounded from above by R∞(Qr‖Qi). Plugging the uppder bound for
each fraction yields the result. ut
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