
HAETAE: Shorter Lattice-Based Fiat-Shamir
Signatures

Jung Hee Cheon1,2, Hyeongmin Choe1, Julien Devevey3, Tim Güneysu4,5,
Dongyeon Hong6, Markus Krausz4, Georg Land4, Marc Möller4, Junbum

Shin2, Damien Stehlé2 and MinJune Yi1

1 Seoul National University, Seoul, Republic of Korea
jhcheon@snu.ac.kr,sixtail528@snu.ac.kr,yiminjune@snu.ac.kr

2 CryptoLab Inc., Seoul, Republic of Korea damien.stehle@cryptolab.co.kr
3 École Normale Supérieure de Lyon, Lyon, France julien.devevey@ens-lyon.fr

4 Ruhr University Bochum, Bochum, Germany firstname.lastname@rub.de,mail@georg.land
5 DFKI, Bremen, Germany

6 jjoker041@gmail.com

Version 2.0
(November 29, 2023)

Abstract. We present HAETAE (Hyperball bimodAl modulE rejecTion signAture
schemE), a new lattice-based signature scheme. Like the NIST-selected Dilithium
signature scheme, HAETAE is based on the Fiat-Shamir with Aborts paradigm, but
our design choices target an improved complexity/compactness compromise that is
highly relevant for many space-limited application scenarios. We primarily focus on
reducing signature and verification key sizes so that signatures fit into one TCP or
UDP datagram while preserving a high level of security against a variety of attacks.
As a result, our scheme has signature and verification key sizes up to 39% and 25%
smaller, respectively, compared than Dilithium. We provide a portable, constant-
time reference implementation together with an optimized implementation using
AVX2 instructions and an implementation with reduced stack size for the Cortex-M4.
Moreover, we describe how to efficiently protect HAETAE against implementation
attacks such as side-channel analysis, making it an attractive candidate for use in
IoT and other embedded systems.
Keywords: Signature, Fiat-Shamir, Lattice-based Cryptography, Bimodal Distribution

This work is submitted to ‘Korean Post-Quantum Cryptography Competition’ (www.kpqc.or.kr) and
‘NIST Post-Quantum Cryptography Standardization of Additional Digital Signature Schemes.’

mailto:jhcheon@snu.ac.kr, sixtail528@snu.ac.kr, yiminjune@snu.ac.kr
mailto:damien.stehle@cryptolab.co.kr
mailto:julien.devevey@ens-lyon.fr
mailto:tim.gueneysu@rub.de, markus.krausz@rub.de, mail@georg.land, marc.moeller@rub.de
mailto:jjoker041@gmail.com
www.kpqc.or.kr

2 HAETAE: Shorter Lattice-Based Fiat-Shamir Signatures

Changelog
November 29, 2023 (version 2.0)

To clearly specify the design of HAETAE to both theorists and the implementers, we
significantly update the specification of HAETAE. The building blocks that are specific to
HAETAE are clearly identified in Section 3, which can be directly linked to the parameters.
The name of the challenge sampler is changed from SampleInBall to SampleBinaryChallenge.
Some parameters are renamed to match the reference implementation. Also, an
implementation-oriented specification is available in Section 5.

The Hyperball sampler for HAETAE-260 and the rANS encoding are modified to
match the implementation and the specification and also to avoid implementation-specific
attacks [Saa23, Tea23]. The parameters for HAETAE-120 and HAETAE-180 are changed to
correctly reflect the verification key compression, which ends up with a small increase in
the signature sizes.

Lastly, the AVX2 optimized implementation and the Cortex M4 embedded implemen-
tation of HAETAE are now available in Section 6 and Section 7, respectively.

May 2, 2023 (version 1.0)

First, all the missing parts in the KpqC first-round submission are included in the reference
code, which can be found on the team HAETAE website: https://kpqc.cryptolab.co.kr.
We implement the rANS encoding for z1 and additionally apply it to the hint vector (h)
compression along with slightly modified HighBits and LowBits algorithms. We implement
the rejection algorithm for the secret key rejection but with a new rejection condition. The
new condition reduces the magnitude of the secret key when multiplied by the challenge,
hence the SIS bound. As a result, we update the signature sizes to the actual sizes with
the encodings.

Second, we remove all the algorithms using floating-point arithmetic. The continuous
Gaussian sampling, required for the continuous hyperball uniform sampling, is implemented
in fixed-point arithmetic by discretizing the hyperball with an appropriate scale factor.
Based on this, we further make the reference implementation to be constant-time; that is,
the execution time for the signing is independent of the secret key.

Third, we introduce a verification key truncation algorithm which is adopted from
Dilithium. This is applied to the first two parameter sets HAETAE-120 and HAETAE-180.

We change the parameter set by considering all the above changes, which give a trade-off
between the sizes and speed.

Lastly, we change our security proof to rely on the analysis of [DFPS23] since the
analysis of [KLS18] is flawed, as pointed out in [DFPS23] and [BBD+23].

1 Introduction
We introduce HAETAE1, a new post-quantum digital signature scheme, whose security is
based on the hardness of the module versions of the lattice problems LWE and SIS. The
scheme design follows the “Fiat-Shamir with Aborts” paradigm [Lyu09, Lyu12], which
relies on rejection sampling: rejection sampling is used to transform a signature trial whose
distribution depends on sensitive information, into a signature whose distribution can be
publicly simulated. Our scheme is in part inspired from CRYSTALS-Dilithium [DKL+18],
a post-quantum “Fiat-Shamir with Aborts” signature scheme which was selected for
standardization by the American National Institute of Standards and Technology (NIST).

1The haetae is a mythical Korean lion-like creature with the innate ability to distinguish right from
wrong.

https://kpqc.cryptolab.co.kr

Team HAETAE 3

HAETAE differs from Dilithium in two major aspects: (i) we use a bimodal distribution
for the rejection sampling, like in the BLISS signature scheme [DDLL13], instead of
a “unimodal” distribution like Dilithium, (ii) we sample from and reject to hyperball
uniform distributions, instead of discrete hypercube uniform distributions. This last aspect
also departs from BLISS, which relies on discrete Gaussian distributions, and follows a
suggestion from [DFPS22], which studied rejection sampling in lattice-based signatures
following the “Fiat-Shamir with Aborts” paradigm.

1.1 Design rationale
A brief recap on Fiat-Shamir with Aborts.

The Fiat-Shamir with Aborts paradigm was introduced in lattice-based cryptography
in [Lyu09, Lyu12]. The verification key is a pair of matrices (A,T = AS mod q), where A
is a uniform matrix modulo some integer q and S is a small-magnitude matrix that makes
up the secret key. A signature for a message M is comprised of an integer vector z
of the form y + Sc, for some random small-magnitude y and some small-magnitude
challenge c = H(Ay mod q,M). Rejection sampling is then used to ensure that the
distribution of the signature becomes independent from the secret key. Finally, the
verification algorithm checks that the vector z is short and that c = H(Az−Tc mod q,M).

Improving compactness.

As analyzed in [DFPS22], The choice of the distributions to sample from and reject to has
a major impact on the signature size. Dilithium relies on discrete uniform distributions in
hypercubes, which makes the scheme easier to implement. However, such distributions are
far from optimal in terms of resulting signature sizes. We choose a different trade-off: by
losing a little on ease of implementation, we obtain more compact signatures.

Uniform distributions in hyperballs.

A possibility would be to consider Gaussian distributions, which are superior to uniform
distributions in hypercubes, in terms of resulting signature compactness (see, e.g.,
[DFPS22]). However, this choice has two downsides. First, the rejection step involves
the computation of a transcendental function on an input that depends on the secret key.
This is cumbersome to implement and sensitive to side-channel attacks [EFGT17]. Second,
since the final signature follows a Gaussian distribution there is a nonzero probability
that the final signature is too large and does not pass the verification. The signer must
realise that and reject the signature, making the expected number of rejects slightly grow
in practice. Uniform distributions over hyperballs have been put forward in [DFPS22]
as an alternative choice of distributions leading to signatures with compactness between
those obtained with Gaussians and those obtained with hypercube uniforms. Compared to
Gaussians, they do not suffer from the afore-mentioned downsides: the rejection step is
simply checking whether Euclidean norms are sufficiently small; and as there is no tail,
there is no need for an extra rejection step to ensure that verification will pass. HAETAE
showcases that this provides an interesting simplicity/compactness compromise.

Bimodal distributions.

A modification of Lyubashevsky’s signatures was introduced in [DDLL13]. It allows for
the use of bimodal distributions in the signature generation. The signature is now of the
form y + (−1)bSc, where y is sampled from a fixed distribution and b ∈ {0, 1} is sampled
uniformly. The signature is then rejected to a given secret-independent target distribution.
To make sure that the verification test passes, computations are performed modulo 2q and

4 HAETAE: Shorter Lattice-Based Fiat-Shamir Signatures

key generation forces the equality AS = qId. It turns out that this modification can lead
to more compact signatures than the unimodal setup. In [DDLL13], the authors relied on
discrete Gaussian distributions. We instead use uniform distributions over hyperballs: like
for Gaussians, switching from unimodal to bimodal for hyperball-uniforms leads to more
compact signatures.

Flexible design by working with modules.

The original design for BLISS [DDLL13] relies on Ring-LWE and Ring-SIS, and a variant
of the key generation algorithm relied on ratios of polynomials, à la NTRU. This setup
forces to choose a working polynomial ring for any desired security level. In order to offer
more flexibility without losing in terms of implementation efficiency, we choose to rely on
module lattices, like Dilithium, with a fixed working polynomial ring R = Z[x]/(x256 + 1)
across all security levels. In our instantiations, we target the NIST PQC security levels 2,
3 and 5. Varying the security and updating the parameters is easily achievable and we
provide a security estimator that is able to help one reach a given target security.

A compact verification key.

The flexibility provided by modules allows us to reduce the verification key size. Instead
of taking the challenge c as a vector over R, we choose it in R: the main condition on the
challenge is that it has high min-entropy, which is already the case for binary vectors over R.
As a result, the secret S can be chosen as a vector over R rather than a matrix. The
key-pair equation AS = qId then becomes As = qj, where j is the vector starting with 1
and then continuing with 0’s. To further compress the verification key, we use verification
key truncation adopted from Dilithium by taking into account the residue modulo 2. Our
key generation algorithm just creates an MLWE sample (Agen,b − a = Agensgen + egen)
modulo q, where a is uniform random over Rk

q . By truncating b as b = b1 + b0, we define
a k × (k + ℓ) matrix A as A = (−2(a − b1) + qj| 2Agen| 2Idk) mod 2q. The key-pair
equation is satisfied for s = (1| sgen| egen−b0). The verification key consists of (Agen, a,b1).
As (a| Agen) is uniformly distributed, we can generate it from a seed using an extendable
output function, and the verification key is reduced to the seed and the vector b1. If we
had kept the original key-pair equation AS = qId, then the appropriately modified variant
of our key-generation algorithm would have led to a verification key that is a matrix (with
a seed) rather than a vector (with a seed).

Compression techniques to lower the signature size.

We use two techniques to compress the signatures. First, as the verification key A is in
(almost)-HNF, we can use the Bai-Galbraith technique [BG14]. Namely, the second part
of the signature, which is multiplied by 2Id in the challenge computation and verification
algorithm, can be aggressively compressed by cutting its low bits. This requires in turn
modifying the computation of the challenge c and the verification algorithm, in order
to account for this precision loss. Usually, this is done by keeping only the high bits
of Ay in the computation of the challenge. However, as we multiply everything by 2, we
do not keep the lowest bit of those high bits and keep the (overall) least significant bit
instead. As in Dilithium, our decomposition of bits technique is a Euclidean division with a
centered remainder, and we choose a representative range for modular integers that starts
slightly below zero to further reduce the support of the high bits. The second compression
technique, suggested in [ETWY22] in the context of lattice-based hash-and-sign signatures,
concerns the choice of the binary representation of the signature. As the largest part of it
consists in a vector that is far from being uniform, we can choose some entropic coding to
obtain a signature size close to its entropy. In particular, as in [ETWY22], we choose the
efficient range Asymmetric Numeral System to encode our signature, as it allows us to

Team HAETAE 5

encode the whole signature and not lose a fraction of a bit per vector coordinate, like with
Huffman coding. We can further apply the two techniques to the hint vector h, which is
also a part of the signature, to reduce the signature sizes.

Efficient choice of modulus.

We choose the prime q to be a good prime in the sense that the ring operations can
be implemented efficiently and that the decomposition of bits algorithms, are correctly
operated. For ring operations, we use the Number Theoretic Transform (NTT) with a
fully splitting polynomial ring. The polynomial ring R fully splits modulo q when the
multiplicative group Z×

q has an element of order 512, or equivalently when q = 1 mod 512.
We choose q = 64513, which indeed satisfies this property. Interestingly, it fits in 16 bits,
which allows dense storing on embedded devices. Furthermore, it is close to the next power
of two, which is convenient for the sampling of uniform integers modulo q.

Fixed-point algorithm for hyperball sampling.

Unlike uniform Gaussian sampling or uniform hypercube sampling, uniform hyperball
sampling has not been considered in the cryptographic protocols before the suggestion
of [DFPS22]. To narrow the gap between the hyperball uniforms sampled in the real and
the ideal world, we discretize the hyperball and bound the numerical error and their effect
by analyzing their propagation. This leads to a fixed-point hyperball sampling algorithm
and, therefore, the fixed-point implementation of the whole signing process.

Deterministic and randomized version.

HAETAE can be set in a deterministic or randomized mode. We focus on the deterministic
version, but we also give the randomized version. Note that in the randomized version, a
significant part of the signing algorithm can be executed off-line as it does not depend on
the message.

1.2 Advantages and limitations
1.2.1 Advantages

• Our scheme relies on the difficulty of hard lattice problems, which have been well-
studied for a long time.

• Signature sizes are 30% to 40% smaller than those of Dilithium at comparable security
levels, and verification keys are 20% to 25% smaller.

• Implementation-wise, while our design rationale departs from Dilithium’s, the scheme
remains implementation-friendly. In particular,

– the rejection step only involves computations of Euclidean norms,
– the whole signing process can be implemented with fixed-point arithmetic,
– a significant message-independent part of signing can be performed “off-line”,

for the randomized version of the scheme.

Comparison with hash-and-sign lattice signatures. In terms of ease of implementation, our
scheme favorably compares to lattice signatures based on the hash and sign paradigm such
as Falcon [FHK+18]. The efforts for making it masking-friendly, namely Mitaka [EFG+22],
were recently broken [Pre23]. HAETAE, Falcon and Mitaka all three rely on some form
of Gaussian sampling, which are typically difficult to implement and protect against
side-channel attacks. Falcon makes sequential calls to a Gaussian sampler over Z with

6 HAETAE: Shorter Lattice-Based Fiat-Shamir Signatures

arbitrary centers. Mitaka also relies on an integer Gaussian sampler with arbitrary centers,
but the calls to it can be massively parallelized. It also uses a continuous Gaussian sampler,
which is arguably simpler. HAETAE, however, only relies on a (zero-centered) continuous
Gaussian sampler, used to sample uniformly in hyperballs. The calls to it can also be
massively parallelized. This difference makes HAETAE possible to have a fixed-point signing
algorithm and easier masking. Further, in the randomized version of the signature scheme,
these samples can be computed offline as they are independent of the message to be signed.
The online tasks are far simpler than those of Falcon and Mitaka. Finally, we note that
key generation is much simpler for HAETAE than in Falcon and Mitaka.

1.2.2 Limitations

• The key generation algorithm restarts if the secret key does not satisfy the key
rejection condition. This makes the key generation algorithm of HAETAE slower
than Dilithium’s.

• While HAETAE is simpler from an implementation perspective, its verification key
and signature sizes are larger than Falcon’s.

2 Preliminaries
Before introducing specific results adapted to the setting in HAETAE in Section 3 and the
HAETAE scheme itself in Section 4, we start by defining notations used throughout this
paper and recapitulate relevant fundamental works.

2.1 Notations
Matrices are denoted in bold font and upper case letters (e.g., A), while vectors are denoted
in bold font and lowercase letters (e.g., y or z1). The i-th component of a vector is denoted
with subscript i (e.g., yi for the i-th component of y).

Every vector is a column vector. We denote concatenation between vectors by putting
the rows below as (u,v) and the columns on the right as (u|v). We naturally extend the
latter notation to concatenations between matrices and vectors (e.g., (A|b) or (A|B)).

We let R = Z[x]/(xn + 1) be a polynomial ring where n is a power of 2 integer and
for any positive integer q the quotient ring Rq = Z[x]/(q, xn + 1) = Zq[x]/(xn + 1). We
abuse notations and identify R2 with the set of elements in R with binary coefficients. We
also let RR = R[x]/(xn + 1) be a polynomial ring over real numbers. For an integer η, we
let Sη denote the set of polynomials of degree less than n with coefficients in [−η, η] ∩ Z.
Given y = (

∑
0≤i<n yi x

i, · · · ,
∑

0≤i<n ynk−n+i x
i)⊤ ∈ Rk (or Rk

R), we define its ℓ2-norm
as the ℓ2-norm of the corresponding “flattened” vector ∥y∥2 = ∥(y0, · · · , ynk−1)⊤∥2.

Let BR,m(r, c) = {x ∈ Rm
R |∥x − c∥2 ≤ r} denote the continuous hyperball with

center c ∈ Rm and radius r > 0 in dimension m > 0. When c = 0, we omit
it. Let B(1/N)R,m(r, c) = (1/N)Rm ∩ BR,m(r, c) denote the discretized hyperball with
radius r > 0 and center c ∈ Rm in dimension m > 0 with respect to a positive integer N .
When c = 0, we omit it. Given a measurable set X ⊆ Rm of finite volume, we let U(X)
denote the continuous uniform distribution over X. It admits x 7→ χX(x)/Vol(X) as a
probability density, where χX is the indicator function of X and Vol(X) is the volume of
the set X. For the normal distribution over R centered at µ with standard deviation σ,
we use the notation N (µ, σ).

For a positive integer α, we define r mod± α as the unique integer r′ in the range
[−α/2, α/2) satisfying the relation r = r′ mod α. We also define r mod+ α as the unique
integer r′ in the range [0, α) that satisfies r = r′ mod α. We denote the least significant bit

Team HAETAE 7

of an integer r with LSB(r). We naturally extend this to integer polynomials and vectors
of integer polynomials, by applying it component-wise.

2.2 Signatures
We briefly recall the formalism of digital signatures.

Definition 1 (Digital Signature). A signature scheme is a tuple of PPT algo-
rithms (KeyGen, Sign,Verify) with the following specifications:

• KeyGen : 1λ → (vk, sk) outputs a verification key vk and a signing key sk;

• Sign : (sk, µ)→ σ takes as inputs a signing key sk and a message µ and outputs a
signature σ;

• Verify : (vk, µ, σ) → b ∈ {0, 1} is a deterministic algorithm that takes as inputs a
verification key vk, a message µ, and a signature σ and outputs a bit b ∈ {0, 1}.

Let γ > 0. We say that it is γ-correct if for any pair (vk, sk) in the range of KeyGen and µ,

Pr[Verify(vk, µ,Sign(sk, µ)) = 1] ≥ γ,

where the probability is taken over the random coins of the signing algorithm. We say
that it is correct in the (Q)ROM if the above holds when the probability is also taken over
the randomness of the random oracle modeling the hash function used in the scheme.

We also give two security notions, namely the existential unforgeability under chosen
message attacks, and under no-message attacks.

Definition 2 (Security). Let T, δ ≥ 0. A signature scheme sig = (KeyGen, Sign,Verify)
is said to be (T, δ)-UF-CMA secure in the QROM if for any quantum adversary A with
runtime ≤ T given (classical) access to the signing oracle and (quantum) access to a
random oracle H, it holds that

Pr
(vk,sk)

[Verify(vk, µ∗, σ∗) = 1|(µ∗, σ∗)← AH,Sign(vk)] ≤ δ,

where the randomness is taken over the random coins of A and (vk, sk) ← KeyGen(1λ).
The adversary should also not have issued a sign query for µ∗. The above probability of
forging a signature is called the advantage of A and denoted by AdvUF-CMA

sig (A). If A does
not output anything, then it automatically fails.

Existential unforgeability against no-message attack, denoted by UF-NMA is defined
similarly except that the adversary is not allowed to query any signature per message.

2.3 Lattice Assumptions
We first recall the well-known lattice assumptions MLWE and MSIS on algebraic lattices.

Definition 3 (Decision-MLWEn,q,k,ℓ,η). For positive integers q, k, ℓ, η and the dimension n
of R, we say that the advantage of an adversary A solving the decision-MLWEn,q,k,ℓ,η

problem is

AdvMLWE
n,q,k,ℓ,η(A) =

∣∣∣∣∣∣
Pr
[
b = 1 | A← Rk×ℓ

q ; b← Rk
q ; b← A(A,b)

]
− Pr

[
b = 1

∣∣∣ A← Rk×ℓ
q ; (s1, s2)← Sℓ

η × Sk
η ;

b← A(A,As1 + s2)

]∣∣∣∣∣∣ .

8 HAETAE: Shorter Lattice-Based Fiat-Shamir Signatures

Definition 4 (Search-MSISn,q,k,ℓ,β). For positive integers q, k, ℓ, a positive real number β
and the dimension n of R, we say that the advantage of an adversary A solving the
search-MSISn,q,k,ℓ,β problem is

AdvMSIS
n,q,k,ℓ,β(A) = Pr

[
0 < ∥y∥2 < β ∧

(A| Idk) · y = 0 mod q
∣∣∣ A← Rk×ℓ

q ; y← A(A)
]
.

Moreover, we finally introduce a variant of the SelfTargetMSIS problem introduced in
Dilithium [DKL+18], which corresponds to our setting.

Definition 5 (BimodalSelfTargetMSISH,n,q,k,ℓ,β). Let H : {0, 1}∗ × M → R2 be a
cryptographic hash function. Let q, k, ℓ > 0, β ≥ 0 and the dimension n of R. An
adversary A solving the search-BimodalSelfTargetMSISH,n,q,k,ℓ,β problem with respect
to j ∈ Rk

2 \ {0} has advantage

AdvBimodalSelfTargetMSIS
H,n,q,k,ℓ,β (A) = Pr


0 < ∥y∥2 < β ∧

H(Ay− qcj mod 2q,M) = c
(A0|b)← Rk×ℓ

q ;
A = (2b + qj| 2A0| 2Idk) mod 2q;

(y, c,M)← A|H(·)⟩(A)

 .

In the ROM (resp. QROM), the adversary is given classical (resp. quantum) access to H.

The following classical reduction from MSIS to BimodalSelfTargetMSIS is very similar
to the reduction from MSIS to SelfTargetMSIS introduced in [DKL+18] and is similarly
non-tight. As this latter reduction, it cannot be straightforwardly extended to a reduction
in the QROM, since it relies on the forking lemma.

Theorem 1 (Classical Reduction from MSIS to BimodalSelfTargetMSIS). Let q > 0 be an
odd modulus, H : {0, 1}∗×M→ R2 be a cryptographic hash function modeled as a random
oracle and that every polynomial-time classical algorithm has a negligible advantage against
MSISn,q,k,ℓ,β. Then every polynomial-time classical algorithm has negligible advantage
against BimodalSelfTargetMSISn,q,k,ℓ,β/2.

Proof sketch. Consider a BimodalSelfTargetMSISn,q,k,ℓ,β/2 classical algorithm A that is
polynomial-time and has classical access to H. If AH(·)(A) makes Q hash queries H(wi,Mi)
for i = 1, · · · , Q and outputs a solution (y, c,Mj) for some j ∈ [Q], then we can construct
an adversary A′ for MSISn,q,k,ℓ,β as follows.

The adversary A′ can first rewind A to the point at which the j-th query was made and
reprogram the hash as H(wj ,Mj) = c′(̸= c). Then, with probability approximately 1/Q,
algorithm A will produce another solution (y′, c′,Mj). We then have{

Ay− qcj = zj = Ay′ − qc′j mod 2q,
∥y∥2, ∥y′∥2 < β/2.

As q is odd, we have A(y− y′) = (c− c′)j mod 2. The fact that c′ ̸= c implies that the
latter is non-zero modulo 2, and hence so is y− y′ over the integers. As it also satisfies
(b| A0| Idk) · (y− y′) = 0 mod q and ∥y− y′∥ < β, it provides a MSISn,q,k,ℓ,β solution for
the matrix (b| A0| Idk), where the submatrix (−b| A0) ∈ Rk×ℓ

q is uniform.

Team HAETAE 9

y← U(BR,k(r)):
1: yi ← N (0, 1) for i = 0, · · · , nk + 1
2: L← ∥(y0, · · · , ynk+1)⊤∥2
3: y← r/L · (

∑n−1
i=0 yi x

i, · · · ,
∑nk−1

i=nk−n yi x
i)⊤

4: return y ▷ y ∈ Rk
R

Figure 1: Hyperball uniform sampling

2.4 Sampling from the Continuous Hyperball-uniform
In order to sample in practice from hyperball uniform, we rely on the following result.

Lemma 1 ([VGS17]). The distribution of the output of the algorithm in Figure 1
is U(BR,k(r)).

Sampling from continuous hyperball-uniform can be done using the algorithm in Figure 1
due to Lemma 1. However, to secure the HAETAE implementation, we sample from discrete
hyperball-uniform. We delay to Section 3.2 the analysis of a discretized version which
turns discrete Gaussian samples to discrete hyperball-uniform distribution.

2.5 Signature Encoding via Range Asymmetric Numeral System
A HAETAE signature is essentially a vector z, that is compressed into z2 with smaller
dimension and a hint h, that are then encoded. While Huffman coding would be applied
on each coordinate at a time, an arithmetic coding encodes the entire coordinates in a
single number. In contrast to Huffman coding, arithmetic coding gets close to entropy also
for alphabets, where the probabilities of the symbols are not powers of two. We recall a
recent type of entropy coding, named range Asymmetric Numeral systems (rANS) [Dud13],
that encodes the state in a natural number and thus allows faster implementations. The
rANS encoding technique was recently used in [ETWY22] and we adapt it to hyperball
uniform distributions. As a stream variant, rANS can be implemented with finite precision
integer arithmetic by using renormalization.

Definition 6 (Range Asymmetric Numeral System (rANS) Coding). Let t > 0 and
S ⊆ [0, 2t − 1]. Let g : [0, 2t − 1]→ Z ∩ (0, 2t] such that

∑
x∈S g(x) ≤ 2t and g(x) = 0 for

all x /∈ S. We define the following:

• CDF : S → Z, defined as CDF(s) =
∑s−1

y=0 g(y).

• symbol : Z → S, where symbol(y) is defined as s ∈ S satisfying CDF(s) ≤ y <
CDF(s+ 1).

• C : Z× S → Z, defined as

C(x, s) =
⌊
x

g(s)

⌋
· 2t + (x mod+ g(s)) + CDF(s).

Then, we define the rANS encoding/decoding for the set S and frequency g/2t as in
Figure 2.

Lemma 2 (Adapted from [Dud13]). The rANS coding is correct, and the size of the rANS
code is asymptotically equal to Shannon entropy of the symbols. That is, for any choice

10 HAETAE: Shorter Lattice-Based Fiat-Shamir Signatures

Encode((s1, · · · , sm) ∈ Sm):
1: x0 = 0
2: for i = 0, · · · ,m− 1 do
3: xi+1 = C(xi, si+1)
4: return xm

Decode(x ∈ Z):
1: y0 = x
2: i = 0
3: while yi > 0 do
4: s′

i+1 = symbol(yi mod+ 2t)
5: yi+1 = ⌊yi/2t⌋ · g(s′

i+1) + (yi mod+ 2t)− CDF(s′
i+1)

6: i++
7: m = i− 1
8: return (s′

m, · · · , s′
1) ∈ Sm

Figure 2: rANS encoding and decoding procedures

of s = (s1, · · · , sm) ∈ Sm, Decode(Encode(s)) = s. Moreover, for any positive x and any
probability distribution p over S, it holds that

∑
s∈S

p(s) log(C(x, s)) ≤ log(x) +
∑
s∈S

p(s) log
(
g(s)
2t

)
+ 2t

x
.

Finally, the cost of encoding the first symbol is ≤ t, i.e., for any x ∈ S, we have
log(C(0, s)) ≤ t.

We determine the frequency of the symbols experimentally, by executing the signature
computation and collecting several million samples. Finally, we apply some rounding
strategy in order to heuristically minimize the empirical entropy

∑
s∈S p(s) log(g(s)/2n).

3 HAETAE-specific Results
While our scheme is reminiscent of Dilithium, the bimodal setting hinders the use of some
of its base components. In this section, we describe parts that are specifically adapted
to HAETAE. First, the key generation algorithm departs from known key generation
algorithms for BLISS, as we work in the module setting. Second, we study the precision
needed when discretizing the hyperball sampler from Section 2.4 to enable fixed-point
arithmetic. Then, we explain how challenges are computed in HAETAE. Next, we describe
the rejection sampling procedure and estimate its expected number of iterations depending
on the fixed-point arithmetic precision. Finally, we explain how to split coordinates of a
signature vector into high and low bits, allowing for signature compression via low bits
drop. This order is consistent with the order in which those results are used during signing.

3.1 Key Generation
When using bimodal rejection sampling, the verification step relies on a specific key
pair (A, s) ∈ Rk×(k+ℓ)

p × Rk+ℓ
p such that As = −As mod p. To generate such a pair,

following [DDLL13], we choose p = 2q and aim at As = qj mod 2q for j = (1, 0, . . . , 0)⊤.

Team HAETAE 11

3.1.1 Key Generation and Encoding

To build such a key pair (A, s), we do as follows. We first generate an MLWE sample b =
Agensgen + egen mod q, where Agen ←↩ U(Rk×(ℓ−1)

q) and (sgen, egen)←↩ U(Sℓ−1
η × Sk

η). We
then define A = (−2b + qj| 2Agen| 2Idk) mod 2q as well as s⊤ = (1|s⊤

gen|e⊤
gen). This is a

valid verification key pair for HAETAE, but the choice of even modulus 2q makes it hard
to truncate the least significant bits of b as in Dilithium.

To enable the verification key truncation, we modify the key generation algorithm, as
follows. We use an extra randomness agen ←↩ U(Rk

q) and let b−agen = Agensgen+egen mod q.
For any decomposition b = b1 + b0, we then define A = (2(agen − b1) + qj|2Agen|2Ik)
as well as s⊤ = (1|s⊤

gen|(egen − b0)⊤). One sees that As = qj mod 2q. In practice, the
verification key is then comprised of b1 and the seed that allows generating Agen and agen.
The secret key is the seed used to generate s and (Agen,agen).

It remains to choose the decomposition of b, that we see as an nk-dimensional vector
with coordinates in [0, q − 1]. We set the coordinates of b1 as follows. If some coordinate
of b is even, then we take the same value for the corresponding coordinate of b1. Else, we
take the rounding of this coordinate to the nearest multiple of 4 as value for b1. Next we
set b0 = b− b1 and we note that coordinates of b0 lie in [−1, 1], i.e., b0 ∈ Sk

1 . We can
then write b = b0 + 2b′

1, where b′
1 is encoded using ⌈log2(q)− 1⌉ bits per coordinate, i.e.

one less bit than b. This is computed coordinate-wise with b0 = (−1)⌊b/2⌋ mod 2b mod 2.
In all of the following, we let (LowBitsvk(b),HighBitsvk(b)) denote (b0,b1).

When b is uniform, we notice that the coordinates of b0 roughly follow a (centered)
binomial law with parameters (2, 1/2), which experimentally leads to smaller choices for γ,
which we discuss and introduce below.

Note that the truncation reduces each coeffficient of b by 1 bit. So the verification
key becomes shorter, but not significantly. Thus, we use the truncation for lower security
levels and keep the no-truncation version for the highest level. In the following, we refer
to the truncated version as d = 1 and the non-truncated version as d = 0, where d is the
vk truncation bit.

3.1.2 Rejection Sampling on the Key

A critical step of our scheme is bounding ∥cs∥2, where s is generated as before and c ∈ R is
a polynomial with coefficients in {0, 1} and has less than or equal to τ nonzero coefficients.
The lower this bound is, the smaller the signature is, which in turn leads to the harder
forging. In the key generation algorithm, we apply the following rejection condition for
some heuristic value γ, bounding ∥cs∥2 ≤ γ

√
τ :

N (s) := τ ·
m∑

i=1

i-thmax
j
∥s(ωj)∥2

2 + r ·
(m+1)-th

max
j

∥s(ωj)∥2
2 ≤ γ2n,

where m = ⌊n/τ⌋, r = n mod τ , and ωj ’s are the primitive 2n-th roots of unity.
Note that s(ωj) is defined as (s1(ωj), · · · , sk+ℓ(ωj)) ∈ Ck+ℓ given the secret key
s = (s1, · · · , sk+ℓ) ∈ Rk+ℓ. Below, we prove that the left hand side is a bound on n

τ · ∥cs∥
2
2

and that this condition leads to asserting ∥cs∥2 ≤ γ
√
τ .

Lemma 3. For any challenge c ∈ {0, 1}n with hamming weight τ and a secret s ∈ Sk+ℓ
η ,

the value ∥cs∥2
2 is upper bounded by

τ

n

(
τ ·

m∑
i=1

i-thmax
j
∥s(ωj)∥2

2 + r ·
(m+1)-th

max
j

∥s(ωj)∥2
2

)
,

where m = ⌊n/τ⌋, r = n mod τ , and ωj’s are the primitive 2n-th roots of unity.

12 HAETAE: Shorter Lattice-Based Fiat-Shamir Signatures

Proof. We first rewrite ∥cs∥2
2 as:

∥cs∥2
2 =

∑
i |c(ωj)|2 · ∥s(ωj)∥2

2
n

,

where s(ωj) = (s1(ωj), · · · , sk+ℓ(ωj)). We have that
∑n

j=1 |c(ωj)|2 = nτ and |c(ωj)|2 =
|ωj,1 + · · ·+ ωj,τ |2 ≤ τ2. We can bound

∑n
j=1 |c(ωj)|2 · ∥s(ωj)∥2

2 by rearranging the order.
Let m = ⌊n/τ⌋ and r = n mod τ . Then m is the maximum number of |c(ωj)|2’s that can
be τ2. By sorting ∥s(ωj)∥2 in a decreasing order,

∥s(ωσ(1))∥2 ≥ ∥s(ωσ(2))∥2 ≥ · · · ≥ ∥s(ωσ(n))∥2,

where σ is a permutation for the indices, we have
n∑

j=1
|c(ωj)|2 · ∥s(ωj)∥2

2 ≤
m∑

j=1
|c(ωσ(j))|2 · ∥s(ωσ(j))∥2

2 +
n∑

j=m+1
|c(ωσ(j))|2 · ∥s(ωσ(m+1))∥2

2.

Then it reaches the maximum when the m largest ∥s(ωj)∥2
2’s are multiplied with τ2’s, i.e.,

n∑
j=1
|c(ωj)|2 · ∥s(ωj)∥2

2 ≤
m∑

j=1
τ2 · ∥s(ωσ(j))∥2

2 +
(n∑

j=1
|c(ωj)|2 −mτ2

)
· ∥s(ωσ(m+1))∥2

2

= τ2 ·
m∑

j=1
∥s(ωσ(j))∥2

2 + r · τ · ∥s(ωσ(m+1))∥2
2.

This concludes the proof.

3.2 Sampling in a Discrete Hyperball
In order to generate a hyperball uniform sample y, we apply a rounding-and-reject strategy
to the discretization of the continuous hyperball uniform sampling from Figure 1, which
allows to generate rightly distributed samples. Our approach in sampling is to avoid the
use of floating point arithmetic for two reasons: First, many microarchitectures do not
provide floating-point units and even if so, the execution time of floating-point instructions
may be data-dependent and thus unsuitable [AKM+15] for a constant-time implementation.
Floating-point computation would also prohibit a masked implementation, that is protected
against power side-channel attacks, because known masking techniques are only applicable
to integers. And second, the required precision is higher than achievable even in IEEE
double. In order to do so, we replace the continuous Gaussian sampler from Lemma 1
and instead use discrete Gaussian distributions, as we know that they approximate well
continuous Gaussian distribution for large standard deviation.

Discretizing the Output. Once we obtain an “hyperball” sample, we choose to round
it. Then, if the resulting sample lies too close to the border of the hyperball, we reject it.
This ensures that for any possible sample, they have the same amount of pre-rounding
predecessors. This also decreases the precision but the output is now discrete in a hyperball
with a somewhat-smaller radius. We simply increase the starting radius to compensate.

We study in the following lemma the rejection probability of this step.
Lemma 4. Let n be the degree of R, M0 ≥ 1, B,m,N > 0. At each iteration, the
algorithm from Figure 3 succeeds with probability ≥ 1/M0 and the distribution of the output
is U(B(1/N)R,m(B)) if we set

N ≥
√
mn

2B · M
1/(mn)
0 + 1

M
1/(mn)
0 − 1

.

The proof of this lemma can be found in Appendix C.

Team HAETAE 13

y← U(B(1/N)R,m(B)):
1: y← U(BR,m(NB +

√
mn/2)) ▷ continuous sampling in Figure 1

2: if ∥⌊y⌉∥2 ≤ NB then
3: return ⌊y⌉/N
4: else, restart ▷ y ∈ B(1/N)R,m(B) ⊂ (1/N)Rm

Figure 3: Discrete hyperball uniform sampling

SampleBinaryChallengeτ (ρ)
// for HAETAE-120 or HAETAE-180

1: Initialize c = c0c1 . . . c255 = 00 . . . 0
2: for i = 256− τ to 255 do
3: j ←↩ {0, . . . , i}
4: ci = cj

5: cj = 1
6: Return c

// for HAETAE-260
1: Initialize c = c0c1 . . . c255 = H(ρ)
2: if wt(c) > 128 then
3: c = c⊗ 11 · · · 1
4: else if wt(c) = 128 then
5: c = c⊗ c0c0 · · · c0
6: Return c

Figure 4: Challenge sampling algorithm

3.3 Challenge Sampling

Challenges in HAETAE are polynomials c ∈ R with binary coefficients and exactly τ of
them are nonzero. As simply hashing the message and the commitment only yields a
binary string ρ, we now explain how to format it to get such a challenge. Since n = 256
across all three parameter sets, the challenge space has size

(
n
τ

)
exceeding the required

entropy 2192 and 2225 for HAETAE-120 and HAETAE-180, respectively. To sample such
challenges we rely on the (binary version of) SampleInBall algorithm from Dilithium, which
we specify in the first half of Figure 4.

For HAETAE-260, however, we require 255 bits of entropy for the challenge space,
which cannot be reached with the fixed Hamming weights for n = 256. To achieve it, we
replace the challenge space into a set containing exactly half of the bitstrings of length 256.
Specifically, we choose a set containing all elements of Hamming weight strictly less than
128 and half of the elements of Hamming weight 128, using the following algorithm. Given
a 256-bits hash with Hamming weight w, do the following. If w < 128, we do nothing, and
if w > 128, we flip all the bits. If w = 128, we decide whether to flip or not, depending on
the first bit. Exactly half of all binary polynomials are reachable this way, which means
that the challenge set has size 2255 as desired. The algorithm is specified in the second
half of Figure 4.

As a side note, this means that the hash function with which we instantiate the Fiat-
Shamir transform is the composition of these two steps, hashing and formatting. Looking
ahead, this corresponds to steps 6 and 7 of Figure 8. Contrary to Dilithium, we do not
stray away from the Fiat-Shamir transform and include the challenge c in the signature as
it is no bigger than ρ when encoded.

14 HAETAE: Shorter Lattice-Based Fiat-Shamir Signatures

3.4 Bimodal Hyperball Rejection Sampling
Recently, Devevey et al. [DFPS22] conducted a study of rejection sampling in the context of
lattice-based Fiat-Shamir with Aborts signatures. They observe that (continuous) uniform
distributions over hyperballs can be used to obtain compact signatures, with a relatively
simple rejection procedure. To make masking easier, HAETAE uses (discretized) uniform
distributions over hyperballs, in the bimodal context. The proof of the following lemma is
available in Appendix C.

Lemma 5 (Bimodal Hyperball Rejection Sampling). Let n be the degree of R, c > 1,
r, t,m > 0, and B ≥

√
B′2 + t2. Define M = 2(B/B′)mn and set

N ≥ 1
c1/(mn) − 1

√
mn

2

(
c1/(mn)

B′ + 1
B

)
.

Let v ∈ Rm ∩ B(1/N)R,m(t). Let p : Rm → {0, 1/2, 1} be defined as follows

p(z) =


0 if ∥z∥ ≥ B′,
1/2 else if ∥z− v∥ < B ∧ ∥z + v∥ < B,
1 otherwise.

Then there exists M ′ ≤ cM such that the output distributions of the two algorithms from
Figure 6 are identical.

v−v

Figure 5: The HAETAE eyes

Figure 5 illustrates (the continuous version) of the rejection sampling that we consider.
The black empty circles have radii equal to B and the green circle has radius B′. We
sample a vector z uniformly inside one of the black circles (with probability 1/2 for each)
and keep z with p(z) = 1/2 if z lies in the blue zone, with probability p(z) = 1 if it lies in
the green zone, and with probability p(z) = 0 everywhere else.

We now have all necessary ingredients in Figures 1, 3, 5, and 6 to make sure the
resulting distribution of z is indeed uniform over the discretized hyperball. Thanks to
Lemma 4 and Lemma 5, we already know the level of precision required for y to maintain
the provable security of HAETAE.

A(v) :
1: y← U(B(1/N)R,m(B))
2: b← U({0, 1})
3: z← y + (−1)bv
4: return z with probability p(z), else ⊥

B :
1: z← U(B(1/N)R,m(B′))
2: return z with probability 1/M ′, else ⊥

Figure 6: Bimodal hyperball rejection sampling

Team HAETAE 15

3.5 High and Low Bits
Recall that a HAETAE signature is principally a vector z, whose lower part is replaced with
a (smaller) hint. HAETAE makes use of two different high and low bits decompositions:
one helps encoding a signature while the other is used when computing a hint.
Following [ETWY22], the first is helpful in the sense that if we correctly choose the
number of low bits, they will be distributed almost uniformly and can then be excluded
from the encoding step. The high bits on the other hand, will then follow a distribution
with a very small variance and we apply the rANS encoding on them only, making it much
more efficient as the size of the alphabet greatly shrunk.

The second decomposition implements a trick that allows to reduce the alphabet size
of the resulting hint, and thus to reduce the size of its encoding.

We use the following base method of decomposing an element in high and low bits. We
first recall the Euclidean division with a centered remainder.

Lemma 6. Let a ≥ 0 and b > 0. It holds that

a =
⌊
a+ b/2

b

⌋
· b+ (a mod± b),

and this writing as a = bq + r with r ∈ [−b/2, b/2) is unique.

We define our decomposition for compressing the upper part of the signature.

Definition 7 (High and low bits). Let r ∈ Z and α be a power of two integer. Define r1 =
⌊(r + α/2)/α⌋ and r0 = r mod± α. Finally, define the tuple:

(LowBits(r, α),HighBits(r, α)) = (r0, r1).

We extend these definitions to vectors by applying them component-wise. We state
that this decomposition lets us recover the original element and bound the components of
the decomposition in Lemma 7. The proof is available in Appendix C.

Lemma 7. Let α be a power of two. Let q > 2 be a prime with α|2(q − 1) and r ∈ Z.
Then it holds that

r = α · HighBits(r, α) + LowBits(r, α),
LowBits(r, α) ∈ [−α/2, α/2),
r ∈ [0, 2q − 1] =⇒ HighBits(r, α) ∈ [0, (2q − 1)/α] .

We define HighBitsz1(r) = HighBits(r, 256) and LowBitsz1(r) = LowBits(r, 256).

3.5.1 High and Low Bits for h

In order to produce the hint that we send instead of the lower part of z, we could use the
previous bit decomposition. However, as noted in [DKL+18, Appendix B] in a preliminary
version, a slight modification allows to further reduce the entropy of the hint.

The idea is to pack the high bits in the range [0, 2(q − 1)/αh). This is possible if we
use the range [−αh/2− 2, 0) to represent the integers that are close to 2q − 1.

Definition 8 (High and low bits for h). Let r ∈ Z. Let q be a prime and αh|2(q − 1)
be a power of two. Let m = 2(q − 1)/αh, r1 = HighBits(r mod+ 2q, αh), and r0 =
LowBits(r mod+ 2q, αh). If r1 = m, let (r′

0, r
′
1) = (r0 − 2, 0). Else, (r′

0, r
′
1) = (r0, r1). We

define:

(LowBitsh(r),HighBitsh(r)) = (r′
0, r

′
1).

16 HAETAE: Shorter Lattice-Based Fiat-Shamir Signatures

As before, we extend these definitions to vectors by applying them component-wise.
We state that this decomposition lets us recover the original element and bound the
decomposition components.

Lemma 8. Let r ∈ Z. Let q be a prime, αh|2(q − 1) be a power of two and define m =
2(q − 1)/αh. It holds that

r = αh · HighBitsh(r) + LowBitsh(r) mod 2q,
LowBitsh(r) ∈ [−α/2− 2, α/2),
HighBitsh(r) ∈ [0,m− 1] .

The proof of Lemma 8 is available in Appendix C.

4 The HAETAE Signature Scheme
In this section, we describe three different versions of HAETAE. As a warm-up, we give
an uncompressed, un-truncated version of HAETAE, implementing the Fiat-Shamir with
aborts paradigm in the bimodal hyperball-uniform setting. We then give the full description
of optimized and deterministic HAETAE as we implemented it. Finally, we discuss the
parts of the signing algorithm which can be pre-computed.

4.1 Uncompressed Description
As a first approach, we give a high-level, uncompressed, description of our signature scheme
in Figure 7. In all of the following sections, we let j = (1, 0, . . . , 0) ∈ Rk, as well as k, ℓ
be two dimensions, N > 0 the fix-point precision and τ > 0 the challenge min-entropy
parameter. The parameters B, B′, and B′′ refer to the radii of hyperballs. Let q be an
odd prime and αh|2(q − 1) is a power of two. We recall the key rejection function based
on Lemma 3:

N : s 7→ τ ·
m∑

i=1

i-thmax
j
∥s(ωj)∥2

2 + r ·
(m+1)-th

max
j
∥s(ωj)∥2

2.

With the parameter γ, we bound N (s) ≤ γ2n, which ensures that ∥cs∥2 ≤ γ
√
τ for

all c ∈ R2 satisfying wt(c) ≤ τ . The key generation algorithm is a simplified version from
Section 3.1, which removes the verification key truncation, for conceptual simplicity.

4.2 Specification of HAETAE
We now give the full description of the signature scheme HAETAE in Figure 8 with the
following building blocks:

• Hash function Hgen for generating the seeds and hashing the messages,

• Hash function H for signing, returning a seed ρ for sampling a challenge,

• Extendable output function expandA for deriving agen and Agen from seedA,

• Extendable output function expandS for deriving (sgen, egen) ∈ Sℓ−1
η × Sk

η from seedsk
and countersk,

• Extendable output function expandYbb for deriving y, b and b′ from seedybb and counter,

The above building blocks can be implemented with symmetric primitives.
Note that at Step 3 of the Verify algorithm, the division by 2 is well-defined as the

operand is even.

Team HAETAE 17

KeyGen(1λ):

1: (Agen)← Rk×(ℓ−1)
q and (sgen, egen)← Sℓ−1

η × Sk
η

2: b = Agen · sgen + egen ∈ Rk
q

3: A = (−2b + qj| 2Agen| 2Idk) mod 2q
4: s = (1, sgen, egen)
5: if N (s) > γ2n then restart
6: return sk = (A, s), vk = A

Sign(sk,M):
1: y← U(B(1/N)R,(k+ℓ)(B))
2: w← A⌊y⌉
3: c = H(w,M) ∈ R2
4: z = (z1, z2) = y + (−1)bcs for b← U({0, 1})
5: if ∥z∥2 ≥ B′ then restart
6: else if ∥2z− y∥2 < B then restart with probability 1/2
7: return σ = (⌊z⌉, c)

Verify(vk,M, σ = (z, c)):
1: w̃ = Az− qcj mod 2q
2: return (c = H(w̃,M)) ∧

(
∥z∥ < B +

√
n(k+ℓ)

2

)
Figure 7: Uncompressed description of HAETAE

Lemma 9. We borrow the notations from Figure 8. If we run Verify(vk,M, σ) on the
signature σ returned by Sign(sk,M) for an arbitrary message M and an arbitrary key-pair
(sk, vk) returned by KeyGen(1λ), then the following relations hold:

1) w1 = HighBitsh(w),

2) w′j = LSB(⌊y0⌉) · j = LSB(w) = LSB(w− 2⌊z2⌉).

3) 2⌊z2⌉− 2z̃2 = LowBitsh(w)−LSB(w) assuming it holds that B′ +αh/4 + 1 ≤ B′′ < q/2,

Proof. Let m = 2(q− 1)/αh. Let us prove the first statement. By definition of h, it holds
that w1 = HighBitsh(w) mod m. However, the latter part of the equality already lies
in [0,m− 1] by Lemma 8. The first part lies in the same range as we reduce mod+ m.
Hence, the equality stands over Z too.

We move on to the second statement. By considering only the first component of
z = y + (−1)bcs, we obtain, modulo 2:

z̃0 = ⌊z0⌉ = ⌊y0⌉+ (−1)bc = ⌊y0⌉+ c.

This yields the result. Moreover, considering everywhere a 2 appears in the definition of A,
we obtain that

w = A1⌊z1⌉ − qcj = (⌊z0⌉ − c)j mod 2.

For the last statement, let us use the two preceding results. In particular, we note the
identity

w1 · αh + w′j = w− LowBitsh(w) + LSB(w).

We note that the last two elements have same parity, as the former one has the same parity
as LowBits(w, αh). By Lemma 8 their sum has infinite norm ≤ αh/2 + 2. Hence from its

18 HAETAE: Shorter Lattice-Based Fiat-Shamir Signatures

KeyGen(1λ):
1: seed← {0, 1}ρ ▷ KeyGen for d = 1
2: (seedA, seedsk, K) = Hgen(seed)
3: (agen| Agen) := expandA(seedA) ∈ Rk×ℓ

q

4: countersk = 0
5: (sgen, egen) := expandS(seedsk, countersk)
6: b = agen + Agen · sgen + egen ∈ Rk

q

7: (b0, b1) = (LowBitsvk(b), HighBitsvk(b))
8: A = (2(agen − 2b1) + qj| 2Agen| 2Idk) mod 2q
9: s = (1, sgen, egen − b0)

10: if N (s) > γ2n then countersk++ and Go to 5
11: return sk = s, vk = (seedA, b1)

Sign(sk,M):
1: µ = Hgen(seedA,b1,M)
2: seedybb = Hgen(K,µ)
3: counter = 0
4: (y, b, b′) := expandYbb(seedybb, counter)
5: w← A⌊y⌉
6: ρ = H(HighBitsh(w), LSB(⌊y0⌉), µ)
7: c = SampleBinaryChallengeτ (ρ)
8: z = (z1, z2) = y + (−1)bcs
9: h = HighBitsh(w)− HighBitsh(w− 2⌊z2⌉) mod+ 2(q−1)

αh
10: if ∥z∥2 ≥ B′ then
11: counter++ and Go to 4
12: else if ∥2z− y∥2 < B ∧ b′ = 0 then
13: counter++ and Go to 4
14: else
15: x = Encode(HighBitsz1(⌊z1⌉))
16: v = LowBitsz1(⌊z1⌉)
17: return σ = (x,v,Encode(h), c)

Verify(vk,M, σ = (x,v, h, c)):
1: z̃1 = Decode(x) · 256 + v and h̃ = Decode(h)
2: (agen| Agen) = expandA(seedA)
3: A1 = (2(agen − 2b1) + qj| 2Agen) mod 2q
4: w1 = h̃ + HighBitsh(A1z̃1 − qcj) mod+ 2(q−1)

αh
5: w′ = LSB(z̃0 − c)
6: z̃2 = (w1 · αh + w′j− (A1z̃1 − qcj)) /2 mod± q
7: z̃ = (z̃1, z̃2)
8: µ̃ = Hgen(seedA,b1,M)
9: ρ̃ = H(w1, w

′, µ̃)
10: return (c = SampleBinaryChallengeτ (ρ̃)) ∧ (∥z̃∥ < B′′)

Figure 8: Full description of deterministic HAETAE. The KeyGen algorithm is slightly
different for d = 0 (HAETAE-260), which do not truncate b. See Section 3.1.1 for details.

definition, it holds that

2z̃2 = 2⌊z2⌉ − LowBitsh(w) + LSB(w) mod± 2q.

Finally, this holds over the integers as the right-hand side has infinite norm at most 2B′ +
αh/2 + 2 < q.

Team HAETAE 19

Compress(z, c):
1: z = (z1, z2) = y + (−1)bcs
2: h = HighBitsh(w)
−HighBitsh(w− 2⌊z2⌉) mod+ 2(q−1)

αh

3: x = Encode(HighBitsz1(⌊z1⌉))
4: v = LowBitsz1(⌊z1⌉)
5: return (x,v,Encode(h))

Decompress(A, x,v, x′):
1: z̃1 = Decode(x) · 256 + v
2: h̃ = Decode(h)
3: A = (A1| 2I) mod 2q
4: w1 = HighBitsh(A1z̃1 − qcj)

+h̃ mod+ 2(q−1)
αh

5: w′ = LSB(z̃0 − c)
6: w̃ = A1z̃1 − qcj
7: z̃2 = (w1 · αh + w′j− w̃) /2 mod± q
8: return z̃ = (z̃1, z̃2)

Figure 9: Compression and decompression algorithms.

Theorem 2 (Completeness). Assume that B′′ = B′+
√
n(k + ℓ)/2+

√
nk ·(αh/4+1) < q/2.

Then the signature schemes of Figure 8 is complete, i.e., for every message M and every
key-pair (sk, vk) returned by KeyGen(1λ), we have:

Verify(vk,M, Sign(sk,M)) = 1.

Proof. We use the notations of the algorithms. The first and second equations from
Lemma 9 state that ρ = ρ̃ and thus

c = SampleBinaryChallengeτ (ρ̃).

On the other hand, we use the last equation from the same lemma to bound the size
of z̃. We have:

∥z̃∥ ≤ ∥z∥+ ∥z− ⌊z⌉∥+ ∥⌊z⌉ − z̃∥
≤ B′ +

√
n(k + ℓ) · ∥z− ⌊z⌉∥∞ + ∥⌊z2⌉ − z̃2∥

≤ B′ +
√
n(k + ℓ)

2 +
√
nk · ∥LowBitsh(w)∥∞

≤ B′ +
√
n(k + ℓ)

2 +
√
nk ·

(αh
4 + 1

)
.

The definition of B′′ implies that the scheme is correct.

4.3 Security
When proving security in the Fiat-Shamir with aborts setting in the QROM, on typically
relies on the generic reduction from [KLS18]. However, as pointed out in [DFPS23]
and [BBD+23], this analysis is flawed. Both works give adaptations to Fiat-Shamir with
aborts of the analysis from [GHHM21] of Fiat-Shamir (without aborts). Moreover, the
reduction from [KLS18] assumes an arbitrary bound on the number of restarts, which is
not the case here. This restriction is waived in both [DFPS23] and [BBD+23].

4.3.1 Underlying Σ-protocols

4.3.2 UF-CMA Security

The security of HAETAE relies on the analysis of [DFPS23], which reduces UF-CMA security
to UF-NMA security, where an adversary is not allowed to make signing queries. This

20 HAETAE: Shorter Lattice-Based Fiat-Shamir Signatures

P (A, s) V (A)
y← U(B(1/N)R,(k+ℓ)(B))

w = A⌊y⌉ mod 2q

w−−−−−→ c← U(C)
c←−−−−

b← U({0, 1})
z = y + (−1)bcs
If p(z), restart

Else ⌊z⌉−−−−−→ Acc. if ∥z∥ ≤ B′′ and
Az− qcj = w mod 2q

P (A, s) V (A)
y← U(B(1/N)R,(k+ℓ)(B))

w = A⌊y⌉ mod 2q
w1 = HighBitsh(w)
w0 = LSB(⌊y0⌉)

w0,w1−−−−−→ c← U(C)
c←−−−−

b← U({0, 1})
z = y + (−1)bcs
If p(z), restart

Else σ = Compress(⌊z⌉, c) σ−−−−→ z̃ = Decompress(A, σ)
Acc. if ∥z̃∥ ≤ B′′ and
Az̃− qcj = w mod 2q

Figure 10: Underlying Σ-protocols for compressed and uncompressed HAETAE.

Sim(vk, c) :
1: z← U(B(1/N)R,k+ℓ(B))
2: w← (HighBitsh(A⌊z⌉ − qcj), LSB(c− y0))
3: z = (z1, z2)
4: x = Encode(HighBitsz1(⌊z1⌉))
5: v = LowBitsz1(⌊z1⌉)
6: h = Encode(h)
7: u← U(Rk

q)
8: u0 ← U(R2)
9: w̃← (HighBitsh(2u + qju0), u0)

10: return (w, x,v, h) with probability p(z), else (w̃,⊥,⊥,⊥)

Figure 11: HAETAE transcript simulator

analysis requires that the commitment min-entropy is high and the underlying Σ-protocol
is Honest-Verifier Zero-Knowledge (HVZK). The latter is proved by providing a simulator
for non-aborting transcripts and proving that the distribution of ⌊y⌉ has sufficiently large
min-entropy.
Commitment Min-entropy. We first claim that the underlying Σ-protocol has large
commitment min-entropy. The underlying identification protocol has ε bits of min-entropy
if for any (w, x),

Pr
y

[
(HighBitsh(A⌊y⌉), LSB(⌊y0⌉)) = (w, x)

]
≤ 2−ε,

for any (pk, sk) ← KeyGen and y ← U(B(1/N)R,(k+ℓ)(B)). We note that LSB(⌊y0⌉) is a
binary vector of length n and is statistically close to uniform. Thus, the inner probability
is (very loosely) bounded by 2−n regardless of the choice of (pk, sk). Hence we obtain at
least 256 bits of min-entropy in all of our parameter sets.
HVZK. Next, we show that the underlying Σ-protocol satisfies the HVKZ property. To
do so, we follow the strategy from [DFPS23, Section 4.2], which studies the simulation of
non-aborting transcripts and switch to computational mode for aborting ones. We propose
the following simulator in Figure 11. Here, p(z) is 1/M if ∥z∥ ≤ r and 0 everywhere else.

We first remark that the resulting simulated distribution of (x,v, h) (possibly x = ⊥,
v = ⊥, h = ⊥) is identical to the real distribution of (x,v, h). As Lemma 5 states that the
real and simulated z has an identical distribution, the bijective map (x,v, h) 7→ z gives
the same result for the transcripts (x,v, h).

(i) Simulating non-aborting transcripts. In both the real and simulated cases, the
non-aborted transcript satisfies w = Az−qcj mod 2q for z recovered from (x,v, h). Hence,
the statistical distance between the real and simulated transcripts is bounded by Lemma 5.

Team HAETAE 21

(ii) Simulating aborting transcripts. As argued in [DFPS23, Section 4.2], in this context,
we can use a computational notion of HVZK rather than the usual statistical definition.
We introduce an LWE-like assumption which states that it is hard to distinguish w =
A⌊y⌉ mod 2q from a uniform element mod 2q. This LWE assumption is unusual only in
its choice of distribution for the noise and the secret.

These two properties allow us to apply [DFPS23, Theorem 4] to reduce the
SUF-CMA security to UF-NMA security.

If one wants to avoid this assumption, it is possible to use the reduction from [BBD+23]
by using A(0) as a simulator. The non-aborting transcripts produced by this simulator
have statistical distance 0 with real ones.
UF-NMA security. Finally, we note that the UF-NMA security game is exactly the
problem defined in Definition 5, up to replacing the verification key by an uniform matrix
(still in HNF form), which can be done under the MLWE assumption.

4.4 HAETAE with Pre-computation
We observe that in the randomized signing process of HAETAE, many operations do not
depend on the message M , and some do not even on the signing key. This enables efficient
“offline” procedures, i.e., precomputations that speed up the “online” phase.

Specifically, there are two levels of offline signing that can be applied to randomized
HAETAE:

1. Generic. If neither the message M nor the signing key is yet unchosen in advance, it
is still possible to perform hyperball sampling. This removes the most time-consuming
operation from the online phase.

2. Designated signing key. Here, only the message M is unknown during offline
signing, while the signing key is fixed. This allows us to perform even more pre-
computations by using only the verifiction key, as shown in Figure 12. Most notably,
there is no longer a matrix-vector multiplication in the online phase.

We showcase the offline and online parts of the (randomized) version of HAETAE in
Figure 12.

4.5 Parameter Sets
For setting parameters, we estimated the costs of practical attacks, as in Dilithium,
Falcon, and many other NIST-submitted schemes. We consider two kinds of attacks: 1)
Key recovery attacks, which amount to solving an MLWE instance; 2) Signature forgery
attacks, for which we rely on the BimodalSelfTargetMSIS instance that appears in the
security analysis for UF-CMA. We then use the fact that the only known way to solve
BimodalSelfTargetMSIS is to solve MSIS. Heuristically, the hash function is not aware of
the algebraic structure of its input, and the random oracle assumption that c is uniform
and independent from the input is sound. Thus, an adversary has no choice but to choose
some w, hash its high and low bits along with some message, and try to compute a short
preimage of w− qcj mod 2q, modulo the low bits truncation. If the adversary succeeds,
the preimage becomes an MSIS solution.

We propose three different parameter sets with varying security levels, where we
prioritize low signature and verification key sizes over faster execution time. The parameter
choices are versatile, adaptable and allow size vs. speed trade-offs at consistent security
levels. For example at cost of larger signatures, a smaller repetition rate M is possible
and thus a faster signing process. This versatility is a notable advantage over Falcon and
Mitaka.

22 HAETAE: Shorter Lattice-Based Fiat-Shamir Signatures

Signoffline(vk):
1: (agen| Agen) = expandA(seedA)
2: A1 = (2(agen − 2b1) + qj| 2Agen) mod 2q
3: List = ()
4: for iter in [L] do
5: y← U(B(1/N)R,(k+ℓ)(B))
6: w = A⌊y⌉
7: w1 = HighBitsh(w)
8: List.append(y,w,w1, LSB(⌊y0⌉))
9: return List

Signonline(sk, List,M):
1: µ = Hgen(seedA,b1,M)
2: tuple = (y,w, tuple3, tuple4)← List
3: List.delete(tuple)
4: c = SampleBinaryChallengeτ (H(tuple3, tuple4, µ))
5: (b, b′)← {0, 1}2

6: z = (z1, z2) = y + (−1)bcs
7: h = tuple3 − HighBitsh(w− 2⌊z2⌉) mod+ 2(q−1)

αh
8: if ∥z∥2 ≥ B′ then Go to 2
9: else if ∥2z− y∥2 < B ∧ b′ = 0 then Go to 2

10: else
11: x = Encode(HighBitsz1(⌊z1⌉))
12: v = LowBitsz1(⌊z1⌉)
13: return σ = (x,v,Encode(h), c)

Figure 12: Randomized, on/off-line signing. Note that app is the function that appends a
tuple to the list.

Like in Dilithium, our modulus q is constant over the parameter sets and allows an
optimized NTT implementation shared for all sets. With only 16-bit in size, our modulus
also allows storing coefficients memory-efficiently without compression.

5 Implementation Specification
In this section, we explain how to efficiently implement HAETAE. We furthermore specify
implementation aspects, that are relevant for compatibility or security. We start this
section with an implementation-oriented specification. Specifically, Figure 13 demonstrates
how to implement the key generation, Figure 14 the signature generation and Figure 15 the
signature verification. These illustrate the use of the Chinese Remainder Theorem (CRT)
and Number-Theoretic Transform (NTT) for efficient polynomial arithmetic. Notably,
b can be transmitted in NTT domain if no rounding is applied, and most arithmetic is
carried out modulo q, and recovering the values modulo 2q is only required for computing
the low and high bits.

5.1 Hyperball Sampler
One critical component of HAETAE is the hyperball sampling. Essentially, the hyperball
sampling procedure consists of four steps:

1. Sample n(k+ ℓ) + 2 discrete Gaussians with σ = 276, sum up their squares, and drop

Team HAETAE 23

Table 1: HAETAE parameters sets. Hardness is measured with the Core-SVP methodology.
Security 120 180 260

n Degree of R (2.1) 256 256 256
(k, ℓ) Dimensions of z2, z1 (4.2) (2,4) (3,6) (4,7)
q Modulus for MLWE & MSIS (2.3) 64513 64513 64513
η Range of sk coefficients (2.1) 1 1 1
τ Weight of c (3.3) 58 80 128
γ sk rejection parameter (3.1) 48.858 57.707 55.13

Resulting key acceptance rate (3.1) 0.1 0.1 0.1
d Truncated bits of vk (3.1) 1 1 0
M Expected # of repetitions (3.4) 6.0 5.0 6.0
B y radius (3.4) 9846.02 18314.98 22343.66
B′ Rejection radius (3.4) 9838.99 18307.70 22334.95
B′′ Verify radius (4.2) 12777.52 21906.65 24441.49
α z1 compression factor (3.5) 256 256 256
αh h compression factor (3.5) 512 512 256

BKZ block-size b to break SIS 409 (333) 617 (512) 878 (735)
Best Known Classical bit-cost 119 (97) 180 (149) 256 (214)
Best Known Quantum bit-cost 105 (85) 158 (131) 225 (188)
BKZ block-size b to break LWE 428 810 988
Best Known Classical bit-cost 125 236 288
Best Known Quantum bit-cost 109 208 253

two samples eventually.

2. Compute the inverse square root of the sum of squares, multiply the result by
B0 +

√
nm/(2N).

Algorithm 1 Deterministic hyperball sampling.
expandYbb(seedybb, κ)

1: (y1,y2) :=⊥ ▷ (y1,y2) ∈ (1/N)Rℓ × (1/N)Rk

2: while (y1,y2) =⊥ do
3: t1 := sampleGauss(SHAKE256(seedybb, κ), n+ 1) ▷ Section 5.1.1
4: t2 := sampleGauss(SHAKE256(seedybb, κ+ 1), n+ 1) ▷ Section 5.1.1
5: for i := 3 to k + ℓ do
6: ti := sampleGauss(SHAKE256(seedybb, κ+ i), n) ▷ Section 5.1.1
7: s :=

∑n+1
i=1 t

2
1,i +

∑n+1
i=1 t

2
2,i +

∑k+ℓ
i=3

∑n
j=1 t

2
i,j

8: drop t1,n and t2,n

9: approximate 1/
√
s ▷ Section 5.1.2

10: for i := 0 to k + ℓ− 1 do
11: for j := 0 to n− 1 do
12: ti,j :=

⌊
ti,j ·

(
BN +

√
nm
2

)
· 1√

s

⌉
▷ round to log2 N fix-point bits

13: κ := κ+ k + ℓ
14: if

∑k+ℓ−1
i=0

∑n−1
j=0 t

2
i,j ≤ (BN)2 then

15: arrange t1, . . . , tℓ as y1
16: arrange tℓ+1, . . . , tk+ℓ as y2

17: sample b, b′ as the first two bits from the output of SHAKE256(seedybb, κ)
18: κ := κ+ 1
19: return (y1,y2, b, b

′, κ)

24 HAETAE: Shorter Lattice-Based Fiat-Shamir Signatures

KeyGen(1λ) for d > 0
1: seed← {0, 1}ρ0

2: (seedA, seedsk,K) := Hgen(seed)
3: (agen, Âgen) := expandAd(seedA) ▷ (agen, Âgen) ∈ Rk

q ×Rk×ℓ−1
q

4: (countersk, flag) := (0, true)
5: while flag do
6: (sgen, egen) := expandS(seedsk, countersk) ▷ (sgen, egen) ∈ Sℓ−1

η × Sk
η

7: b := agen + NTT−1(Âgen ◦ NTT(sgen)) + egen mod q ▷ b ∈ Rk
q

8: (b0,b1) := (LowBitsvk(b),HighBitsvk(b))
9: (s1, s2) := (sgen, egen − b0)

10: countersk := countersk + 1
11: if N (s1, s2) ≤ γ2n then
12: flag := false
13: tr := H(seedA,b1)
14: return sk = (s1, s2,K, tr, seedA,b1), vk = (seedA,b1)

KeyGen(1λ) for d = 0
1: seed← {0, 1}ρ0

2: (seedA, seedsk,K) := Hgen(seed)
3: (countersk, flag) := (0, true)
4: while flag do
5: (sgen, egen) := expandS(seedsk, countersk) ▷ (sgen, egen) ∈ Sℓ−1

η × Sk
η

6: (s1, s2) := (sgen, egen)
7: countersk := countersk + 1
8: if N (s1, s2) ≤ γ2n then
9: flag := false

10: Âgen := expandAd(seedA) ▷ Âgen ∈ Rk×ℓ−1
q

11: b̂ := −2
(

Âgen ◦ NTT(sgen) + NTT(egen)
)

mod q ▷ b ∈ Rk
q

12: tr := H(seedA, b̂)
13: return sk = (s1, s2,K, tr, seedA, b̂), vk = (seedA, b̂)

Figure 13: Implementation specification (deterministic version) of HAETAE key generation

3. Multiply every sample from Step 1 by the result of Step 2.

4. Check the ℓ2 norm of the resulting vector, start from Step 1 if this is bigger than
B0N .

In the following, we explain how the Gaussian sampling and the inverse square root
approximation can be implemented efficiently. Besides, we choose to generate each of the
k + ℓ polynomials independently, which helps parallelizing the randomness generation for
implementations that use vectorization and hardware implementations. Then, for the first
two polynomials, we generate one more Gaussian sample each, which is never stored but
included in the sum of squared samples.

5.1.1 Discrete Gaussian Sampling

As we will lose precision when computing the inverse square root of a Gaussian sample,
we require a Gaussian sampler with high fix-point precision. This is achieved by sampling
over Z with a large standard deviation and then scaling the resulting sample to our

Team HAETAE 25

Sign(sk,M)
1: (s1, s2,K, tr, seedA, ψ) := sk
2: Â := unpackAd(seedA, ψ) ▷ Algorithm 2, A ∈ Rk×ℓ

q

3: µ := Hgen(tr,M)
4: seedybb := Hgen(K,µ)
5: (κ, σ) := (0,⊥)
6: while σ =⊥ do ▷ pre-compute (ŝ1, ŝ2) := (NTT(s1),NTT(s2))
7: (y1,y2, b, b

′, κ) := expandYbb(seedybb, κ) ▷ (y1,y2) ∈ (1/N)Rℓ × (1/N)Rk

8: w := NTT−1(Â ◦ NTT(⌊y1⌉)) + 2 · ⌊y2⌉ mod q ▷ w ∈ Rk
q

9: w′ := fromCRT(w, ⌊y1,1⌉) ▷ Algorithm 3, w′ ∈ Rk
2q

10: w′
1 := HighBitsh(w′)

11: ρ = H(w′
1, LSB(⌊y1,1⌉), µ)

12: c = SampleBinaryChallengeτ (ρ)
13: ĉ := NTT(c)
14: z1,1 := y1,1 + (−1)b · c ▷ (z1, z2) ∈ (1/N)Rℓ × (1/N)Rk

15: (z1)2..ℓ := (y1)2..ℓ + (−1)bNTT−1(ĉ ◦ ŝ1)
16: z2 := y2 + (−1)bNTT−1(ĉ ◦ ŝ2)
17: if ∥(z1, z2)∥2 < B′ and (∥2(z1, z2)− (y1,y2)∥2 > B or b′ = 1) then

▷ Check this condition in constant time.
18: h := w′

1 − HighBitsh(w′ − 2 ⌊z2⌉) mod+ 2(q−1)
αh

19: σ := packSig(HighBitsz1(⌊z1⌉), LowBitsz1(⌊z1⌉),h, c)
▷ Section 5.2 (can fail and return ⊥)

Figure 14: Implementation specification (deterministic version) of HAETAE signing.

Verify(vk,M, σ)
1: (seedA, ψ) := vk
2: Â := unpackAd(seedA, ψ) ▷ Algorithm 2, A ∈ Rk×ℓ

q

3: (HighBitsz1(⌊z1⌉), LowBitsz1(⌊z1⌉),h, c) := unpackSig(σ)
▷ Section 5.2 (can fail and cause a rejection)

4: z̃1 := HighBitsz1(⌊z1⌉) · 256 + LowBitsz1(⌊z1⌉)
5: w′ := LSB(z̃1,1 − c)
6: w̃ := Â ◦ NTT(z̃1) mod q
7: w̃′ := fromCRT(w̃, w′) ▷ Algorithm 3
8: w̃′

1 := h̃ + HighBitsh (w̃′) mod+ 2(q−1)
αh

9: z̃2 := [w̃′
1 · αh +w′j− w̃′ mod 2q]/2 ▷ addition with w′ only for first vector element

10: µ̃ = Hgen(seedA, ψ,M)
11: Return (c = SampleBinaryChallengeτ (H(w̃′

1, w
′, µ̃))) ∧ (∥(z̃1, z̃2)∥ < B′′)

Figure 15: Implementation specification (deterministic version) of HAETAE verification

convenience. We use [Ros20, Algorithm 12] to sample from a discrete Gaussian distribution
with σ = 276, k = 272.

In essence, we start by sampling a discrete Gaussian x with σ = 16 using a Cumulative
Distribution Table (CDT) and a uniform y ∈ {0, . . . , 272 − 1} and set the Gaussian sample
candidate as r = x272 + y. Subsequently, this candidate is accepted with probability
exp(−y(y + x273)/2153). Fortunately, we achieve a very low rejection rate of less than 5 %.

Specifically, the CDT we use has 64 entries and uses a precision of 16 bit. Then, to
compute the sample candidate’s square and the input to the exponential, we first compute

26 HAETAE: Shorter Lattice-Based Fiat-Shamir Signatures

r2 and round the result to 76-bit precision, which is accumulated later if the sample is
accepted. Subsequently, r2 − 276x2 yields the input to the exponential.

Approximating the Exponential. For this, we need to approximate the exponential
function e−x by a polynomial f(x) on the closed interval [c − w

2 , c + w
2], with center c

and width w. We first determine an upper bound for the polynomial order required
to approximate e−x, given an upper bound for the absolute error. We obtain f(x)
by truncating the expansion of e−x into a series of Chebyshev polynomials of the first
kind Tn(x) with linearly transformed input, as this is known to yield small absolute
approximation errors for a given polynomial order. We find:

e−x = −e−c + 2e−c
∞∑

n=0
(−1)nIn

(
w
2
)
Tn

(
x−c
w/2

)
x ∈ [c− w

2 , c+ w
2]

where In(z) are modified Bessel functions of the first kind, which rapidly converge to zero
for growing n. We recall ∥Tn(x)∥ ≤ 1 for ∥x∥ ≤ 1. For intervals [0, w] with not too large
widths we find 2e−cIm+1(w

2) to be a useful estimate of the maximum absolute error, when
truncating the series at order m > 1. This relation allows us to directly limit m according
to the interval to cover and the maximum permissible error.

We then determine the polynomial f(x) of at most order m by using the Chebyshev
approximation formula, which has been shown to result in a nearly optimal approximation
polynomial in the case of the exponential function [Li04]. The number of fraction bits is
chosen to match the error. The numerical evaluation is performed in fixed-point arithmetic
using the Horner’s scheme and multiplying with shifts to retain significant bits. When
shifting right, we round half up, which retains about one additional bit of accuracy when
compared to truncation.

Barthe et al. [BBE+19] introduced the GALACTICS toolbox to derive suitable
polynomials approximating e−x. They numerically evaluate and modify trial polynomials,
minimizing the relative error, until an acceptable level is reached. The polynomials are
evaluated using a Horner’s scheme, similar to this work, but rely on truncation. When
comparing to polynomials derived using the GALACTICS toolbox, our approximation has
a slightly smaller absolute error for intervals of interest in this work, while maintaining the
same polynomial order and constant time properties. This holds even when introducing
rounding to the GALACTICS evaluation of polynomials. Moreover, our approach is
somewhat less heuristic than the GALACTICS method. Practically, as can be seen in
Listing 1, the approximation consists of six signed 48-bit multiplications with subsequent
rounding (smulh48), several constant shifts with rounding and constant additions.

Listing 1: Fix-point approximation of the exponential function with 48 bit of precision.
,

1 static uint64_t approx_exp (const uint64_t x) {
2 int64_t result ;
3 result = -0 x0000B6C6340925AELL ;
4 result = ((smulh48 (result , x) + (1 LL << 2)) >> 3) + 0 x0000B4BD4DF85227LL ;
5 result = ((smulh48 (result , x) + (1 LL << 2)) >> 3) - 0 x0000887F727491E2LL ;
6 result = ((smulh48 (result , x) + (1 LL << 1)) >> 2) + 0 x0000AAAA643C7E8DLL ;
7 result = ((smulh48 (result , x) + (1 LL << 1)) >> 2) - 0 x0000AAAAA98179E6LL ;
8 result = ((smulh48 (result , x) + 1LL) >> 1) + 0 x0000FFFFFFFB2E7ALL ;
9 result = ((smulh48 (result , x) + 1LL) >> 1) - 0 x0000FFFFFFFFF85FLL ;

10 result = ((smulh48 (result , x))) + 0 x0000FFFFFFFFFFFCLL ;
11 return result ;
12 }

Finalization. If the sample is accepted eventually, it is (implicitly) scaled by the factor
2−76 to obtain a continuous sample from the standard normal distribution. Moreover, we

Team HAETAE 27

only need to store the upper 64 bits of the sample and round off the rest.
In summary, each Gaussian sample candidate requires

• 72 bit randomness for the lower part of the candidate (y),

• 16 bit randomness for the CDT sampling, and

• 48 bit randomness for rejecting the candidate conditionally according to the output
of the exponential.

This results in vast a randomness demand per hyperball sample, and explains the dominance
of hashing in the cycle count performance.

5.1.2 Approximating the Inverse Square Root

To turn the vector of standard normal distributed variates into a hyperball sample
candidate, we must compute its norm. For this, we accumulate all squared samples
and approximate the inverse square root of the accumulated value. The approximation
result is then multiplied by the constant r′ +

√
nm/(2N), which yields the scaling factor

that is multiplied to each Gaussian sample. For the inverse square root, we deploy
Newton’s method, which is a well-known technique for that purpose. However, Newton’s
method requires a starting approximation that is, with each iteration, turned into a better
approximation. Fortunately, we know that the sum of nm+2 independent squared standard
normal variables follows a χ2 distribution with expected value nm+ 2. Hence, the starting
approximation can be fixed and precomputed as 1/

√
nm+ 2. The number of iterations

for a targeted precision can be determined experimentally. Therefore, we performed the
approximation for the first input values that have negligible probabilities either for the
cumulative distribution function of χ2(nm+ 2) or its survival function, and checked how
many iterations are required to still reach reasonable precision.

5.2 Signature Packing and Sizes
The last step of the signature generation is to compress and pack the elements of the
signature. A packed HAETAE signature consists of the challenge c, the low bits of z1 (LN
coefficients), the high bits of z1 and h (KN coefficients). Because the distributions of the
values in the high bits of z1 and the coefficients in h are both very dense, we can compress
both polynomial vectors with encoding. Figure 16 displays the frequencies for the possible
values for both vectors in HAETAE-120.

Before compressing the values, we map them to a smaller symbol space and thereby
reject the very unlikely values and the corresponding signatures. For h we cut out most of
the values in the middle of the range, for HAETAE-120 this reduces the size of the symbol
space from 252 to 13.

Sh(n) =

 n, for 0 ≤ n ≤ cuth
⊥, for cuth < n ≤ cuth + offseth

n− offseth, for cuth + offseth < n


For the high bits of z1 we tail-cut the distribution left and right of the center at 0, and
then shift the remaining values to the non-negative range beginning at 0. For HAETAE-120
this reduces the size of the symbol space from 37 to 13.

Sz1(n) =

 ⊥, for n < −cutz1
n+ cutz1, for − cutz1 ≤ n ≤ cutz1
⊥, for cutz1 < n



28 HAETAE: Shorter Lattice-Based Fiat-Shamir Signatures

Table 2: Symbol mapping and encoding size parameters.
Scheme cuth offseth |{Sh(n)}| cutz1 |{Sz1(n)}| baseh basez1
HAETAE-120 6 239 13 6 13 7 132
HAETAE-180 8 235 17 8 17 127 376
HAETAE-260 16 471 33 9 19 358 501

The parameters for these mappings are defined in Table 2. At the signature verification,
the mapping must be reverted after decoding the compressed symbols.

The reason for these mappings is mainly to get significantly smaller precomputation
tables for the rANS encoding and decoding. Also, all symbols can now be represented
with 8-bits, which simplifies the rANS implementation. Furthermore, for the high bits of
z1, a mapping to non-negative values is necessary to be able to use rANS encoding. The
effect on the resulting signature size is insignificant.

20 40 60 80 100 120 140 160 180 200 220 240

0.1

0.2

0.3

Coefficient values

Fr
eq

ue
nc

y

(a) h

−15 −10 −5 5 10 15

0.1

0.2

0.3

0.4

Coefficient values

Fr
eq

ue
nc

y

(b) HB(z1)

Figure 16: Distribution of the coefficients of h and HB(z1) in HAETAE-120.

The size of the compressed high bits of z1 and h varies and must be included in
the signature, to allow a correct unpacking and decoding. The size of one compressed
polynomial vector is often more than 255 bytes, and can thus not be expressed by one
byte. Its variance however, is limited, and thus we encode the size the compressed high
bits of z1 and h as positive offset to a fixed base value. This unsigned offset value fits into
one byte in most of the cases, if not, the signature gets rejected. The base values can be
found in Table 2.

The final signature is then built as following: The first 32 bytes contain the seed for

Team HAETAE 29

the challenge polynomial c. Following, we have LN bytes for the low bits of z1. The
next first byte consists of the offset to the base size for the encoding of the high bits of z1
and the second byte is the offset for h. Then we have the encoding of the high bits of z1
and directly afterwards the encoding of h, both with varying sizes, which are indicated
beforehand. Lastly, the signature is padded with zero bytes to reach the fixed signature
size, if any bytes remain. Signatures that would exceed the fixed limit get rejected.

To prevent signature forgeries, during signature unpacking and decoding multiple sanity
checks have to be performed: the zero padding must be correct, the decoding must not fail
and decode the expected number of coefficients while using exactly the amount of bytes
indicated with the offset. Furthermore, rANS decoding must end with the fixed predefined
start value to be unique. Our rANS encoding is based on an implementation by Fabian
Giesen [Gie14].

To set the fixed signature size as reported in Table 3, we evaluated the distribution
empirically and determined a threshold that requires a rejection in less than 0.1% of the
cases. Figure 17 displays the raw signature size distribution of 20000 executions (without
the size-based rejection sampling).

1,462 1,464 1,466 1,468 1,470 1,472 1,474 1,476

1
2
3

Signature size (bytes)

Fr
eq

ue
nc

y

(a) HAETAE-120

2,338 2,340 2,342 2,344 2,346 2,348 2,350 2,352

1
2
3
4

Signature size (bytes)

Fr
eq

ue
nc

y

(b) HAETAE-180

2,940 2,942 2,944 2,946 2,948 2,950

2
4

Signature size (bytes)

Fr
eq

ue
nc

y

(c) HAETAE-260

Figure 17: Raw signature size distribution over 20000 executions. We set the bound for
the size-based rejection to result in a rejection rate of less than 0.1%.

In Table 3 we compare the signature and key sizes of HAETAE, Dilithium, and Falcon.
The verification keys in HAETAE are 20% (HAETAE-260) to 25% (HAETAE-120 and
HAETAE-180) smaller, than their counterparts in Dilithium. The advantage of the hyperball
sampling manifests itself in the signature sizes, HAETAE has 29% to 39% smaller signatures
than Dilithium. Less relevant are the secret key sizes, that are almost half the size in
HAETAE compared to Dilithium. A direct comparison to Falcon for the same claimed
security level is only possible for the highest parameter set, Falcon-1024 has a signature of
less than half the size compared to HAETAE-260, and its verification key is about 14%
smaller.

30 HAETAE: Shorter Lattice-Based Fiat-Shamir Signatures

Table 3: NIST security level, signature and key sizes (bytes) of HAETAE, Dilithium, and
Falcon.

Scheme Lvl. vk Signature Sum Secret key
HAETAE-120 2 992 1,474 2,466 1,376
HAETAE-180 3 1,472 2,349 3,821 2,080
HAETAE-260 5 2,080 2,948 5,028 2,720
Dilithium-2 2 1,312 2,420 3,732 2,528
Dilithium-3 3 1,952 3,293 5,245 4,000
Dilithium-5 5 2,592 4,595 7,187 4,864
Falcon-512 1 897 666 1,563 1,281
Falcon-1024 5 1,792 1,280 3,072 2,305

Table 4: Reference implementation speeds. Median and average cycle counts of 1000
executions for HAETAE, Dilithium, and Falcon. Cycle counts were obtained on one core of
an Intel Core i7-10700k, with TurboBoost and hyperthreading disabled.

Scheme KeyGen Sign Verify

HAETAE-120 med 1,403,402 6,039,674 376,486
ave 1,827,567 9,458,682 376,631

HAETAE-180 med 2,368,038 9,161,312 691,652
ave 3,448,185 11,611,868 692,014

HAETAE-260 med 3,101,280 11,444,678 895,098
ave 4,088,383 17,229,712 896,622

Dilithium-2 med 343,222 1,191,218 376,008
ave 343,639 1,527,406 376,543

Dilithium-3 med 630,170 2,061,816 612,538
ave 630,607 2,603,237 612,852

Dilithium-5 med 945,776 2,522,834 987,154
ave 949,662 3,080,734 988,250

Falcon-512 med 53,778,476 17,332,716 103,056
ave 60,301,272 17,335,484 103,184

Falcon-1024 med 154,298,384 38,014,050 224,378
ave 178,516,059 38,009,559 224,840

5.3 Performance Reference Implementation
We developed an unoptimized, portable and constant-time implementation in C for HAETAE
and report median and average cycle counts of one thousand executions for each parameter
set in Table 4. Due to the key and signature rejection steps, the median and average values
for key generation and signing respectively differ clearly, whereas the two values are much
closer for the verification.

For a fair comparison, we also performed measurements on the same system with
identical settings of the reference implementation of Dilithium1 and the implementation
with emulated floating-point operations, and thus also fully portable, of Falcon2, as given
in Table 4. The performance of the signature verification for HAETAE is very close to
Dilithium throughout the parameter sets. HAETAE-180 verification is 13% slower than its
counter-part, HAETAE-260 on the other hand, is 9% faster than the respective Dilithium
parameter set. For key generation and signature computation, our current implementation
of HAETAE is clearly slower than Dilithium. We measure a slowdown of factors three to
five. In comparison to Falcon, however, HAETAE has 38-50 times faster key generation
and around three times faster signing speed. For the verification, Falcon outperforms both

1https://github.com/pq-crystals/dilithium/tree/master/ref
2https://falcon-sign.info/falcon-round3.zip

Team HAETAE 31

Dilithium and HAETAE by roughly a factor of four.
A closer look at the key generation reveals that the complex Fast Fourier Transformation,

that is required for the rejection step, is with 53% by far the most expensive operation
and a sensible target for optimized implementations.

Profiling the signature computation reveals that the slowdown compared to Dilithium
is mainly caused by the sampling from a hyperball, where about 80% of the computation
time is spent. The hyperball sampling itself is dominated by the generation of randomness,
which we derive from the extendable output function SHAKE256 [Dwo15], which is also
used in the Dilithium implementation. Almost 60% of the signature computation time is
spent in SHAKE256.

Based on the profiling and benchmarking of subcomponents, we estimate the
performance of a randomized HAETAE implementation with pre-computation. The generic
version, which is independent of the key, would already achieve a speedup of a factor five
for its online signing, because the expensive hyperball sampling can be done offline. For the
pre-computation variant with a designated signing key, additionally, a lot of matrix-vector
multiplications and therefore most of the transformations from and to the NTT domain,
can be precomputed. We estimate about 12% of the full deterministic signing running
time, for the online signing in this case.

6 Optimized Implementation for AVX2
Advanced Vector Extensions 2 (AVX2) is an extension to the x86 instruction set architecture
and available in processors since 2011. It provides Single Instruction Multiple Data (SIMD)
operations on 256-bit registers, and thus allows to e.g. do an operation on eight 32-bit
values in parallel. In this section we explain, how to exploit this parallelization.

The three major components, that significantly determine the computation time of
HAETAE are Keccak, the NTT and the hyperball sampling. For the first two components
we can fall back to existing optimized code. For the NTT in particular, we can reuse the
implementation in Dilithium with only slight adaptions with regard to constants. In the
following we demonstrate how to implement the third component, the hyperball sampling
efficiently using AVX2 instructions.

6.1 Vectorized Hyperball Sampling
After the parallel generation of the randomness, generally, we have two options to parallelize
the hyperball sampling. First, we can sample four different polynomials in parallel, and
second, we can generate the Gaussian samples within a polynomial in parallel, since they
are generated independently. We opt for the first approach.

As the sampling process is relatively complex, we cannot load input vectors, generate
samples from them, and eventually store the samples. Instead, we pass several times over
the internal memory state, dividing the procedure into seven separate steps:

1. parsing of the input randomness: separating the three parts for each sample candidate
into separate memory locations such that later steps can process them quickly,

2. CDT sampling,

3. constructing the sample candidate, its square, and the input to the exponential
approximation,

4. approximate the exponential,

5. generate masks which candidates to reject,

32 HAETAE: Shorter Lattice-Based Fiat-Shamir Signatures

6. accumulate the squares of the non-rejected samples, and

7. storing only the accepted samples into the correct final memory positions.

In the following, we detail Steps 2, 3, and 4.

6.1.1 Parallel CDT Sampling

Although we perform 16-bit CDT sampling, we cannot use the 16-fold parallel vpcmpgtw
comparison, since it is a signed comparison, and use vpcmpgtd instead, which operates on
eight signed 32-bit integers. As we want to sample four samples in parallel, we store the
CDT and the input randomness redundantly, such that we can perform the comparison
with all 64 entries with 32 comparisons. However, since AVX2 only offers 16 vector registers,
we have to perform this comparison in three chunks.

vpcmpgtd c, a, b writes -1 to c if the respective vector element in a is in fact greater
than its counterpart in b, and else 0. Thus, we can use vpaddd to accumulate these
results, but they will be negative. For the final chunk, we use vpsrlq to line up the two
intermediate results, then add them and negate them.

6.1.2 Multi-precision Squaring

Since the sample candidate is 72 bits long and AVX2 only supports 32-bit multiplication,
we perform vectorized multi-precision arithmetic. Therefore, we split the candidate into its
low 32 bits, the middle 16 bits, and the upper 31 bits. For the schoolbook multiplication,
we perform the six partial multiplications with vpmuludq consecutively, such that they
can be executed pipelined and in parallel. The subsequent recombination and rounding
can be performed with a sequence of 16 instructions of shifts (vpsrlq, vpsllq), additions
(vpaddq), and ANDs (vpand).

6.1.3 Vectorized Approximation of the Exponential

The exponential approximation as explained in Section 5.1 consists of six signed 48-bit
multiplications, which is not supported natively by AVX2. Consequently, we implement
this operation with a vectorized multi-precision approach.

More specifically, we know that the first operand of this multiplication is signed, and
the second is not. Thus, splitting the second operand into a low and a high half is trivial,
but for the signed operand, this requires a slightly more sophisticated approach: Here, the
upper half is obtained by an arithmetic right-shift by 24. By shifting this result left again
by 24 (shifting in zeros), and subtracting the result from the original value, we obtain the
lower half.

Since AVX2 does not offer a signed right shift over 64-bit entries, we generate a mask of
sign bits and simulate a signed right shift by performing a bitwise OR. Unfortunately, we
require this operation three times during a single signed multiplication operation. Notably,
AVX512 offers a signed right shift, which will speed up this operation considerably.

Eventually, we perform a vectorized signed 48-bit multiplication using 32 instructions,
out of which 17 are used for the emulation of a signed right shift. Moreover, we use seven
variable and three constant vector registers (out of which one is the second input, cf.
Listing 1), which leaves six registers for other constants. Apart from the multiplication,
we only make use of addition and shifts (vpaddq, vpsrlq).

6.2 Performance and Comparison AVX2
The impact of the parallelized Keccak can be observed by looking at the cycle costs for
unpacking the matrix A, which is between five to seven times faster compared to the

Team HAETAE 33

Table 5: AVX2 optimized implementation speeds. Median and average cycle counts of
1000 executions for HAETAE, Dilithium, and Falcon. Cycle counts were obtained on one
core of an Intel Core i7-10700k, with TurboBoost and hyperthreading disabled.

Scheme KeyGen Sign Verify

HAETAE-120 med 882,350 1,323,118 115,638
ave 1,185,881 1,943,274 115,690

HAETAE-180 med 1,654,464 1,844,610 183,920
ave 2,242,520 2,299,298 184,003

HAETAE-260 med 2,199,678 2,069,734 223,852
ave 2,935,538 3,013,524 223,976

Dilithium-2 med 87,020 200,242 92,148
ave 86,937 252,905 92,190

Dilithium-3 med 146,560 334,898 148,810
ave 146,688 402,012 148,883

Dilithium-5 med 233,976 415,228 232,146
ave 233,895 484,119 232,241

Falcon-512 med 24,663,306 863,076 100,540
ave 26,637,878 863,420 100,709

Falcon-1024 med 71,013,520 1,740,188 228,086
ave 78,797,658 1,740,520 228,326

reference implementation. For e.g. HAETAE-120, the costs went down from around 132k
cycles to 24k cycles. The picture is similar for the hyperball sampling, where we measure
a speed-up of factor six to eight. The cycle counts for one function call in HAETAE-120
are around 1640k in the reference and 270k in the optimized implementation. The highly
optimized NTT taken from Dilithium, is almost 19 times faster than the one in our portable
reference code.

Table 5 provides cycle numbers for the AVX2 optimized implementations of HAETAE,
Dilithium and Falcon. Compared to our reference implementation, the signature generation
is around five times faster in the optimized implementation. For the signature verification
we observe an acceleration of around three to four.

The comparison with Dilithium does not change distinctly with respect to the reference
implementations, except for the key generation, where Dilithium experiences a much greater
acceleration. Falcon on the other hand is considerably faster at the signature generation
with its AVX2 implementation, compared to its portable reference code. Table 4 showed
around three times faster signature generation for HAETAE compared to Falcon. Optimized
for AVX2 and also using the floating-point unit, Falcon becomes faster than HAETAE.

We note, however, that both Dilithium and Falcon went through a multi-year process
of incrementally optimized implementations, whereas this process has just started for
HAETAE. Moreover, when we apply the heuristic that sending one byte via internet costs at
least 1000 cycles [BBC+20, Sec. 5.4], remarkably, HAETAE is already nearly as performant
as Dilithium in terms of signing plus sending the signature.

7 Embedded Implementation on Cortex-M4
To evaluate the suitability of HAETAE for embedded environments we developed an
implementation for the STM32f4-Discovery board, featuring 128 KiB RAM and a Cortex-
M4F processor which implements the ARMv7E-M ISA and operates on 32-bit words. We
use the PQM4 framework [KRSS19] for development and evaluation, as it is the de facto
standard for comparison of post-quantum cryptography schemes on Cortex-M4 processors.
The Cortex-M4F, in contrast to the Cortex-M4, features a floating-point unit. Its floating

34 HAETAE: Shorter Lattice-Based Fiat-Shamir Signatures

point registers can be used to store and load intermediate values within a single cycle to
reduce the pressure on the 13 general purpose registers.

The profiling of the reference implementation already indicates that replacing the
portable Keccak implementation with one optimized for the Cortex-M4 is an important
and straightforward step towards fast execution time. The two other major components
that are highly relevant are the polynomial arithmetic and the Gaussian sampler, both
will be discussed in the following.

7.1 Polynomial Arithmetic
In this section, we will address the issue of how to implement the required arithmetic
operations on these rings and mappings between them on a Cortex-M4 platform.

7.1.1 Modular Reductions

In modular arithmetic, the Barret reduction [Bar87], the Montgomery modular multiplica-
tion [Mon85], and related techniques are indispensable for efficient computation, the first
for reducing given numbers, the second for yielding the reduced result of a multiplication
with a constant mod q. The algorithms avoid computationally expensive divisions by q and
replace them with a multiplication by a suitably chosen number and division by powers
of two, which can be realized with shift operations. Both methods initially reduce the
result to the interval [0, 2q] and perform the full reduction with a conditional subtraction,
which can be done in constant time. In many cases one can forgo the final reduction for
intermediate results, an approach dubbed lazy reduction.

The prime chosen in the HAETAE scheme is q = 64513 = 0xFC01, the largest unsigned
16-bit prime with a 512th root of unity. Fully reduced elements of Zq can be stored
efficiently in 16-bit in the bottom or top half of a 32-bit register.

Unfortunately, this does not carry over to arithmetic operations. A lazy reduction or
an addition already requires 17 bits to store the result, a combination of a lazily reduced
multiplication followed by an addition requires 18 bits. The recent advance of the Plantard
multiplication [Pla21] is not useful within this work, as the prime in HAETAE is not
compatible. Plantard multiplication requires q < 2R

1+
√

5 ≊ 0.618R, i.e., q ≤ 40503 for
R = 216. So the prime of HAETAE is too large for this use-case with Cortex-M4 16-bit
DSP-instructions. The same goes for Seiler’s variant [Sei18] of signed Montgomery modular
multiplication, which is only well-defined for q < R

2 .

7.1.2 16-bit vs 32-bit

Quite a few post-quantum schemes use primes that are 13-bit values or smaller. In this
case, one can both store and manipulate the coefficients graciously and efficiently as
two signed 16-bit values packed into one 32-bit register, as the Cortex-M4 offers a wide
range of instructions intended for Digital Signal Processor (DSP) applications, like mixed
multiplication of upper and lower halves of two registers that can be used for this purpose.
In the case of HAETAE, trade-offs need to be found between the compactness of 16-bit
storage and doubled speed of access for consecutive coefficients on the one hand, and the
required overhead to fully reduce the coefficients before writing them to memory.

If coefficients are written once and afterwards are read repeatedly without alterations,
the 16-bit representation can be worthwhile. When polynomials of the public key are
expanded, the coefficients are sampled in fully reduced state, we therefore store them in
halfwords.

While it is feasible to use a modified Montgomery reduction with unsigned 16-bit
integers as input and 17 bits output (or a 16-bit value with overflow flag), there are no

Team HAETAE 35

corresponding instructions available to exploit this. In contrast, the Montgomery reduction
in the Dilithium implementation for the Cortex-M4 uses R = 232 and takes only three
instructions. We determined the overhead associated with full reductions required to
store coefficients as 16-bit values to be too large to outperform the 32-bit variant for the
NTT. The same applies to other polynomial arithmetic operations in HAETAE, besides
the expanded polynomials of the public key, we therefore operate on 32-bit coefficients.

7.1.3 NTT

HAETAE, as other lattice-based schemes, extensively employs polynomial multiplication.
The NTT is a generalization of the Fast Fourier Transform (FFT) and is the state-of-
the-art technique to perform this operation, speeding up the computation considerably,
as compared to, e.g., schoolbook multiplication. The addition and multiplication of
polynomials transformed into the NTT domain are carried out coefficient-wise, greatly
reducing the cost of the latter operation. The overhead to perform the transform and
inverse transform, where required, is usually outweighed by the performance gain in the
multiplication. HAETAE is specified such that large parts of the public key are expanded
directly to the NTT domain.

Fortunately, the closeness to Dilithium, which also uses polynomials of degree n = 256,
allows us the reuse its highly optimized assembly code for the NTT developed for the
Cortex-M4 by Abdulrahman et al. [AHKS22], which improves over previous work [GKOS18].
The code adjustments required for operation in HAETAE are limited to adjusting constants
like the prime being used, the root of unity, which is chosen as 426 (the primitive 512th

root of unity of q = 64513) and the twiddle factors.
Replacing the portable C code from the reference implementation with optimized

assembly derived from the Dilithium implementation reduces the cycle count per invocation
from 37506 cycles to 8047 cycles, a speed-up by a factor of 4.6. For the inverse NTT, the
cycle count dropped from 43116 to 8369, a speed-up by a factor of 5.1.

7.2 Gaussian Sampler
The major numerical components of the Gaussian sampler are the CDT sampler for
sampling the most significant bits and the fixed-point exponential function used in the
rejection step. As both components are called repeatedly, both have been implemented in
assembly code.

The CDT sampler accumulates ones and zeros, depending on comparisons of a uniformly
sampled 16-bit random value to tabled threshold values. We use the uadd16, usub16 and
sel SIMD instructions from the Cortex-M4 instruction set to carry out two comparisons
and accumulations in parallel. We furthermore optimize the memory access and unroll
the loop. By doing so we reduce the instruction count from 800 cyles for the reference
implementation to 206 cyles, a speed-up by a factor of 3.9.

The exponential is approximated by a polynomial, which is evaluated using Horner’s
scheme. The reference implementation of the exponential function uses fixed-point
arithmetic with 48 fraction bits. Values are embedded in 64-bit integers and 64x64
to 128-bit multiplication is used. The latter operation has no native support on the
Cortex-M4. To circumvent this limitation, the Cortex-M4 implementation splits the value
into two signed components at the start of each multiplication, namely the most significant
bits ah = a » 24 and the least significant bits as al = a - ah. For the accumulation of
the results a 64-bit integer is used again, taking advantage of the smlal instruction. This
repeated switch between representations allows for efficient computation of the individual
Horner’s scheme iterations. Whereas the reference implementation of the exponential
function takes 1658 cycles to execute, this is reduced to 563 instructions in the optimized

36 HAETAE: Shorter Lattice-Based Fiat-Shamir Signatures

Cortex-M4 code, a speed-up by a factor of 2.9.

7.3 Stack Optimization
Besides execution time, also the memory footprint is an important metric for constrained
devices. The target device in this work has 128 KiB of RAM available as stack memory.
In this context, data structures typically encountered in lattice based cryptography need
to be considered as rather large. A single polynomial in HAETAE takes 512 B or 1 KiB of
memory to store, depending on whether the data is represented as 16-bit or 32-bit values.
So vectors or matrices of polynomials can occupy a considerable share of the available
RAM, if stored in their entirety. In this section we explore how to minimize memory use;
in some cases significant trade-offs between memory usage and execution speed can be
made.

The reference implementation of HAETAE is designed with an emphasis on readability
and close similarity to the mathematical specification. This results in top level functions,
which consist of long monolithic blocks with many large data structures, which do not
necessarily have overlapping lifetimes, but nevertheless occupy stack space for the entire
function lifecycle. Most stack memory is required for the signature generation. Due to
the unnecessarily high stack usage of the reference implementation, HAETAE-180 and
HAETAE-260 do not run on the STM32f4-Discovery board without optimizations.

To reduce the memory footprint we executed two strategies. First, we carefully analyzed
the liveness of each relevant variable and refactored the monolithic code into subroutines
to reduce the scope of variables and thereby the total stack usage. This slightly impacts
the readability of the code, but does not affect the performance.

In a second variant we additionally opted for a more aggressive memory reduction, by
recomputing polynomials on demand, this obviously comes with performance costs. We
adapt the data structures to be primarily polynomial oriented instead of vector and matrix
oriented representations. Recomputations are done during public key usage, where we
generate each polynomial on demand, and during hyperball sampling, where we sample
each polynomial twice, once for the evaluation of the normalization factor and a second
time to sample the actual y values. Since the hyperball sampling is computationally very
expensive, this leads to a severe overhead in runtime.

7.4 Performance and Comparison Cortex-M4
Table 6 shows the maximum stack size of our two Cortex-M4 implementations of HAETAE
and values reported in the PQM4 framework about Dilithium and Falcon. With speed-
opt, we refer to our implementation, that is optimized for the Cortex-M4 and includes
multiple stack-size optimizations, but does not trade speed for better memory requirements.
stack-opt refers to the version, where we additionally exploit speed vs memory trade-offs.

First, we can observe that the memory requirements of HAETAE are small enough to
run on the STM32f4-Discovery board for all parameter sets, even in the speed-opt version.
Second, the stack sizes for HAETAE are in the same order of magnitude as Dilithium and
Falcon. Compared to speed-opt HAETAE, Dilithium requires around two to three times
more memory during key generation, and a similar overhead for signature verification. The
difference is at most 20% for signature generation, for this operation Dilithium requires
less memory than HAETAE for the first two parameter sets.

Our stack-opt version reduces the stack-size up to 34% during signature generation and
key generation, but does not differ for the verification. However, this comes with higher
costs in terms of computation time.

Falcon sticks out for its stack-size below 10 KiB for both parameter sets during
verification.

Team HAETAE 37

Table 6: Maximum stack size in bytes for Cortex-M4 implementations of HAETAE,
Dilithium, and Falcon.

Scheme KeyGen Sign Verify

HAETAE-120 speed-opt 19,796 54,564 22,532
stack-opt 17,364 40,732 22,532

HAETAE-180 speed-opt 29,612 69,631 31,020
stack-opt 22,444 57,116 31,020

HAETAE-260 speed-opt 34,108 102,964 36,428
stack-opt 22,356 68,380 36,428

Dilithium-2 38,408 49,380 36,212
Dilithium-3 60,836 68,836 57,724
Dilithium-5 97,692 115,932 92,788
Falcon-512 18,416 42,508 4,724
Falcon-1024 36,296 82,532 8,820

Table 7: Average cycle counts of 1000 (100 for Falcon) executions on the Cortex-M4 for
HAETAE, Dilithium, and Falcon.

Scheme KeyGen Sign Verify

HAETAE-120 speed-opt 8,904,552 27,311,965 1,054,478
stack-opt 10,818,804 51,016,745 1,054,472

HAETAE-180 speed-opt 17,666,326 34,466,279 2,026,448
stack-opt 22,859,766 65,854,630 2,026,454

HAETAE-260 speed-opt 22,850,880 50,174,603 2,733,469
stack-opt 23,213,004 99,471,768 2,733,451

Dilithium-2 1,597,999 4,111,596 1,571,804
Dilithium-3 2,830,024 6,588,465 2,691,283
Dilithium-5 4,826,422 8,779,067 4,705,693
Falcon-512 155,757,768 38,979,435 481,452
Falcon-1024 480,071,949 85,125,001 994,972

Table 7 shows the cycles spend by our two Cortex-M4 implementations of HAETAE
and values reported in the PQM4 framework about Dilithium and Falcon. Our version
using aggressive stack reduction techniques based on recomputations does not impact the
signature verification time, but almost doubles the computation time for the signature
generation. The time overhead for key generation is up to 30%. Similar to our AVX2
optimized implementation, the relative performance comparison of HAETAE to Dilithium
and Falcon does not change drastically.

Acknowledgements
Part of this work was done while Damien Stehlé was in École Normale Supérieure de
Lyon and Institut Universitaire de France, and Dongyeon Hong and MinJune Yi were
in CryptoLab Inc. Julien Devevey and Damien Stehlé were supported by the AMIRAL
ANR grant (ANR-21-ASTR-0016), the PEPR quantique France 2030 programme (ANR-
22-PETQ-0008) and the PEPR Cyber France 2030 programme (ANR-22-PECY-0003).
Tim Güneysu, Markus Krausz, Georg Land and Marc Möller have been supported by the
Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s
Excellence Strategy - EXC 2092 CASA - 390781972, and by the German Federal Ministry
of Education and Research BMBF through the projects QuantumRISC (16KIS1038) and
PQC4Med (16KIS1044).

38 HAETAE: Shorter Lattice-Based Fiat-Shamir Signatures

References
[ABC+22] Melissa Azouaoui, Olivier Bronchain, Gaëtan Cassiers, Clément Hoffmann,

Yulia Kuzovkova, Joost Renes, Markus Schönauer, Tobias Schneider, François-
Xavier Standaert, and Christine van Vredendaal. Leveling Dilithium
against leakage: Revisited sensitivity analysis and improved implementations.
Cryptology ePrint Archive, Report 2022/1406, 2022. https://eprint.iacr.
org/2022/1406.

[AHKS22] Amin Abdulrahman, Vincent Hwang, Matthias J. Kannwischer, and Amber
Sprenkels. Faster kyber and dilithium on the cortex-M4. In Giuseppe Ateniese
and Daniele Venturi, editors, ACNS 22, volume 13269 of LNCS, pages 853–871.
Springer, Heidelberg, June 2022.

[AKM+15] Marc Andrysco, David Kohlbrenner, Keaton Mowery, Ranjit Jhala, Sorin
Lerner, and Hovav Shacham. On subnormal floating point and abnormal
timing. In 2015 IEEE Symposium on Security and Privacy, pages 623–639.
IEEE, 2015.

[Bar87] Paul Barrett. Implementing the Rivest Shamir and Adleman public key
encryption algorithm on a standard digital signal processor. In Andrew M.
Odlyzko, editor, CRYPTO’86, volume 263 of LNCS, pages 311–323. Springer,
Heidelberg, August 1987.

[BBC+20] Daniel J. Bernstein, Billy Bob Brumley, Ming-Shing Chen, Chitchanok
Chuengsatiansup, Tanja Lange, Adrian Marotzke, Bo-Yuan Peng, Nicola
Tuveri, Christine van Vredendaal, and Bo-Yin Yang. Ntru prime: round 3.
https://ntruprime.cr.yp.to/nist/ntruprime-20201007.pdf, 2020.

[BBD+23] Manuel Barbosa, Gilles Barthe, Christian Doczkal, Jelle Don, Serge Fehr,
Benjamin Grégoire, Yu-Hsuan Huang, Andreas Hülsing, Yi Lee, and Xiaodi
Wu. Fixing and mechanizing the security proof of Fiat-Shamir with aborts
and Dilithium. Cryptology ePrint Archive, Paper 2023/246, 2023. https:
//eprint.iacr.org/2023/246.

[BBE+19] Gilles Barthe, Sonia Belaïd, Thomas Espitau, Pierre-Alain Fouque, Mélissa
Rossi, and Mehdi Tibouchi. GALACTICS: Gaussian sampling for lattice-
based constant- time implementation of cryptographic signatures, revisited.
In Lorenzo Cavallaro, Johannes Kinder, XiaoFeng Wang, and Jonathan Katz,
editors, ACM CCS 2019, pages 2147–2164. ACM Press, November 2019.

[BG14] Shi Bai and Steven D. Galbraith. An improved compression technique for
signatures based on learning with errors. In Josh Benaloh, editor, CT-RSA 2014,
volume 8366 of LNCS, pages 28–47. Springer, Heidelberg, February 2014.

[BP18] Leon Groot Bruinderink and Peter Pessl. Differential fault attacks on
deterministic lattice signatures. IACR TCHES, 2018(3):21–43, 2018. https:
//tches.iacr.org/index.php/TCHES/article/view/7267.

[DDLL13] Léo Ducas, Alain Durmus, Tancrède Lepoint, and Vadim Lyubashevsky. Lattice
signatures and bimodal Gaussians. In Ran Canetti and Juan A. Garay,
editors, CRYPTO 2013, Part I, volume 8042 of LNCS, pages 40–56. Springer,
Heidelberg, August 2013.

[DFPS22] Julien Devevey, Omar Fawzi, Alain Passelègue, and Damien Stehlé. On
rejection sampling in lyubashevsky’s signature scheme. In Shweta Agrawal and

https://eprint.iacr.org/2022/1406
https://eprint.iacr.org/2022/1406
https://ntruprime.cr.yp.to/nist/ntruprime-20201007.pdf
https://eprint.iacr.org/2023/246
https://eprint.iacr.org/2023/246
https://tches.iacr.org/index.php/TCHES/article/view/7267
https://tches.iacr.org/index.php/TCHES/article/view/7267

Team HAETAE 39

Dongdai Lin, editors, ASIACRYPT 2022, Part IV, volume 13794 of LNCS,
pages 34–64. Springer, Heidelberg, December 2022.

[DFPS23] Julien Devevey, Pouria Fallahpour, Alain Passelègue, and Damien Stehlé. A
detailed analysis of Fiat-Shamir with aborts. Cryptology ePrint Archive, Paper
2023/245, 2023. https://eprint.iacr.org/2023/245.

[DKL+18] Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky, Peter Schwabe,
Gregor Seiler, and Damien Stehlé. CRYSTALS-Dilithium: A lattice-based
digital signature scheme. IACR TCHES, 2018(1):238–268, 2018. https:
//tches.iacr.org/index.php/TCHES/article/view/839.

[dPEK+] Rafaël del Pino, Thomas Espitau, Shuichi Katsumata, Mary Maller, Fabrice
Mouhartem, Thomas Prest, Mélissa Rossi, and Markku-Juhani Saarinen.
Raccoon: A side-channel secure signature scheme. Submission to the NIST
Additional Post-Quantum Digital Signature Schemes standardization process.
Available at https://raccoonfamily.org/wp-content/uploads/2023/07/
raccoon.pdf.

[Dud13] Jarek Duda. Asymmetric numeral systems: entropy coding combining speed
of huffman coding with compression rate of arithmetic coding, 2013. ArXiv
preprint, available at https://arxiv.org/abs/1311.2540.

[Dwo15] Morris J Dworkin. Sha-3 standard: Permutation-based hash and extendable-
output functions. FIPS 202, 2015.

[EFG+22] Thomas Espitau, Pierre-Alain Fouque, François Gérard, Mélissa Rossi, Akira
Takahashi, Mehdi Tibouchi, Alexandre Wallet, and Yang Yu. Mitaka: A
simpler, parallelizable, maskable variant of falcon. In Orr Dunkelman and
Stefan Dziembowski, editors, EUROCRYPT 2022, Part III, volume 13277 of
LNCS, pages 222–253. Springer, Heidelberg, May / June 2022.

[EFGT17] Thomas Espitau, Pierre-Alain Fouque, Benoît Gérard, and Mehdi Tibouchi.
Side-channel attacks on BLISS lattice-based signatures: Exploiting branch
tracing against strongSwan and electromagnetic emanations in microcontrollers.
In Bhavani M. Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu,
editors, ACM CCS 2017, pages 1857–1874. ACM Press, October / November
2017.

[ENST23] Thomas Espitau, Guilhem Niot, Chao Sun, and Mehdi Tibouchi. Square
unstructured integer euclidean lattice signature. Submission to the NIST’s
post-quantum cryptography standardization process, 2023.

[ETWY22] Thomas Espitau, Mehdi Tibouchi, Alexandre Wallet, and Yang Yu. Shorter
hash-and-sign lattice-based signatures. In Yevgeniy Dodis and Thomas
Shrimpton, editors, CRYPTO 2022, Part II, volume 13508 of LNCS, pages
245–275. Springer, Heidelberg, August 2022.

[FHK+18] Pierre-Alain Fouque, Jeffrey Hoffstein, Paul Kirchner, Vadim Lyubashevsky,
Thomas Pornin, Thomas Prest, Thomas Ricosset, Gregor Seiler, William
Whyte, Zhenfei Zhang, et al. Falcon: Fast-fourier lattice-based compact
signatures over ntru. Submission to the NIST’s post-quantum cryptography
standardization process, 36(5), 2018.

[GHHM21] Alex B. Grilo, Kathrin Hövelmanns, Andreas Hülsing, and Christian Majenz.
Tight adaptive reprogramming in the QROM. In Mehdi Tibouchi and Huaxiong
Wang, editors, ASIACRYPT 2021, Part I, volume 13090 of LNCS, pages 637–
667. Springer, Heidelberg, December 2021.

https://eprint.iacr.org/2023/245
https://tches.iacr.org/index.php/TCHES/article/view/839
https://tches.iacr.org/index.php/TCHES/article/view/839
https://raccoonfamily.org/wp-content/uploads/2023/07/raccoon.pdf
https://raccoonfamily.org/wp-content/uploads/2023/07/raccoon.pdf
https://arxiv.org/abs/1311.2540

40 HAETAE: Shorter Lattice-Based Fiat-Shamir Signatures

[Gie14] Fabian Giesen. Interleaved entropy coders. arXiv preprint arXiv:1402.3392,
2014.

[GKOS18] Tim Güneysu, Markus Krausz, Tobias Oder, and Julian Speith. Evaluation
of lattice-based signature schemes in embedded systems. In 25th IEEE
International Conference on Electronics, Circuits and Systems, ICECS 2018,
Bordeaux, France, December 9-12, 2018, pages 385–388. IEEE, 2018.

[HDS23] Abiodoun Clement Hounkpevi, Sidoine Djimnaibeye, and Michel Seck.
Eaglesign: A new post-quantum elgamal-like signature over lattices. Submission
to the NIST’s post-quantum cryptography standardization process, 2023.

[HPP+23] Thomas Pornin Huang, Eamonn W Postlethwaite, Thomas Prest, Ludo N
Pulles, and Wessel van Woerden. Hawk. version 1.0.1 (july 19, 2023), 2023.

[KLS18] Eike Kiltz, Vadim Lyubashevsky, and Christian Schaffner. A concrete treatment
of Fiat-Shamir signatures in the quantum random-oracle model. In Jesper Buus
Nielsen and Vincent Rijmen, editors, EUROCRYPT 2018, Part III, volume
10822 of LNCS, pages 552–586. Springer, Heidelberg, April / May 2018.

[KLS+23] Markus Krausz, Georg Land, Florian Stolz, Dennis Naujoks, Jan Richter-
Brockmann, Tim Güneysu, and Lucie Johanna Kogelheide. Generic accelerators
for costly-to-mask PQC components. IACR Cryptol. ePrint Arch., page 1287,
2023.

[KRSS19] Matthias J. Kannwischer, Joost Rijneveld, Peter Schwabe, and Ko Stoffelen.
pqm4: Testing and benchmarking NIST PQC on ARM cortex-M4. Cryptology
ePrint Archive, Report 2019/844, 2019. https://eprint.iacr.org/2019/
844.

[Li04] Ren-Cang Li. Near optimality of chebyshev interpolation for elementary
function computations. IEEE Trans. Computers, 53(6):678–687, 2004.

[Lyu09] Vadim Lyubashevsky. Fiat-Shamir with aborts: Applications to lattice and
factoring-based signatures. In Mitsuru Matsui, editor, ASIACRYPT 2009,
volume 5912 of LNCS, pages 598–616. Springer, Heidelberg, December 2009.

[Lyu12] Vadim Lyubashevsky. Lattice signatures without trapdoors. In David
Pointcheval and Thomas Johansson, editors, EUROCRYPT 2012, volume
7237 of LNCS, pages 738–755. Springer, Heidelberg, April 2012.

[MGTF19] Vincent Migliore, Benoît Gérard, Mehdi Tibouchi, and Pierre-Alain Fouque.
Masking Dilithium - efficient implementation and side-channel evaluation. In
Robert H. Deng, Valérie Gauthier-Umaña, Martín Ochoa, and Moti Yung,
editors, ACNS 19, volume 11464 of LNCS, pages 344–362. Springer, Heidelberg,
June 2019.

[Mon85] Peter L Montgomery. Modular multiplication without trial division.
Mathematics of computation, 44(170):519–521, 1985.

[MUTS22] Soundes Marzougui, Vincent Ulitzsch, Mehdi Tibouchi, and Jean-Pierre Seifert.
Profiling side-channel attacks on Dilithium: A small bit-fiddling leak breaks
it all. Cryptology ePrint Archive, Report 2022/106, 2022. https://eprint.
iacr.org/2022/106.

[Pla21] Thomas Plantard. Efficient word size modular arithmetic. IEEE Transactions
on Emerging Topics in Computing, 9(3):1506–1518, 2021.

https://eprint.iacr.org/2019/844
https://eprint.iacr.org/2019/844
https://eprint.iacr.org/2022/106
https://eprint.iacr.org/2022/106

Team HAETAE 41

[Pre23] Thomas Prest. A key-recovery attack against mitaka in the t-probing model.
Cryptology ePrint Archive, Report 2023/157, 2023. https://eprint.iacr.
org/2023/157.

[Ros20] Melissa Rossi. Extended Security of Lattice-Based Cryptography. PhD thesis,
École Normale Supérieure de Paris, 2020.

[RS23] Keegan Ryan and Adam Suhl. Round 1 (additional signatures) official comment:
Eht, 2023.

[Saa23] Markku-Juhani O. Saarinen. Buffer overflows in haetae / on crypto vs
implementation errors, 2023. Available at https://groups.google.com/a/
list.nist.gov/g/pqc-forum/c/bkJKBFq3TDY/m/lTCum6zgBQAJ.

[Sei18] Gregor Seiler. Faster AVX2 optimized NTT multiplication for ring-LWE
lattice cryptography. Cryptology ePrint Archive, Report 2018/039, 2018.
https://eprint.iacr.org/2018/039.

[SSF23] Igor Semaev, Auxiliary Submitter, and Martin Feussner. Digital signature
algorithms ehtv3 and ehtv4 submission to nist pqc. Submission to the NIST’s
post-quantum cryptography standardization process, 2023.

[Tea23] HuFu Team. rans signature compression done right, 2023. Available at
http://123.56.244.4/rANS.pdf.

[Tib23] Mehdi Tibouchi. Round 1 (additional signatures) official comment: Eaglesign,
2023.

[VGS17] Aaron R Voelker, Jan Gosmann, and Terrence C Stewart. Efficiently sampling
vectors and coordinates from the n-sphere and n-ball. Centre for Theoretical
Neuroscience-Technical Report, 01 2017.

[YJL+23] Yang Yu, Huiwen Jia, Leibo Li, Delong Ran, Zhiyuan Qiu, Shiduo Zhang,
Xiuhan Lin, and Xiaoyun Wang. Hufu: Hash-and-sign signatures from powerful
gadgets. algorithm specifications and supporting documentation. version 1.1
(september 2, 2023), 2023.

A Recent lattice-based signatures
In this section, we give a size comparison of the recent lattice-based signature schemes.
In Table 8, we compare the verification key and signature sizes (in bytes) of some
selected lattice signature schemes, including the NIST’s on-ramp candidates. Note that
we additionally showcase some disadvantages, e.g., some recent analyses reported at pqc-
forum (some are verified by the submitters, and others are not) or the use of new family
of assumptions, which may degrade the claimed security.

B Security against Physical Attacks
Implementation security is a crucial aspect of making cryptosystems feasible in real-world
applications. A significant advantage of HAETAE is that it can be protected against
power side-channel attacks efficiently and with reasonable overhead. In this context, we
emphasize the similarity of HAETAE to Dilithium. Hence, past works analyzing concrete
attacks [BP18, MUTS22], but also countermeasures [MGTF19, ABC+22], mainly apply to
HAETAE as well.

https://eprint.iacr.org/2023/157
https://eprint.iacr.org/2023/157
https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/bkJKBFq3TDY/m/lTCum6zgBQAJ
https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/bkJKBFq3TDY/m/lTCum6zgBQAJ
https://eprint.iacr.org/2018/039
http://123.56.244.4/rANS.pdf

42 HAETAE: Shorter Lattice-Based Fiat-Shamir Signatures

While there is no known method to efficiently mask Falcon, Mitaka [EFG+22] was
designed to be easy to protect against implementation attacks, while still having the
advantage of similarly small signatures as Falcon. For Mitaka, the crux regarding side-
channel security is sampling Gaussian-distributed values. Together with Mitaka, an efficient,
masked algorithm for discrete Gaussian sampling was presented. However, Prest broke
its security proof recently [Pre23]. In this respect, HAETAE has the strong advantage
that Gaussian sampling only needs to be secured against the much stronger Simple Power
Analysis (SPA) attacker model, which allows for simpler countermeasures, while Mitaka’s
side-channel security will always depend on a masked sampler.

While a fully protected implementation of HAETAE is out of scope for this paper, we
briefly sketch its feasibility.

Protecting the Arithmetic. Most notably, HAETAE does not deploy floating-point
arithmetic at any point, and only few secrets require fix-point arithmetic. Remarkably,
addition of fix-point arithmetic can be masked relatively easy, and HAETAE never requires
a multiplication of fix-point values.

During signing, the most critical operation is multiplying the (public) challenge
polynomial c with s and subsequently adding the result to y. Since this operation
may leak information about the secret key statistically over many executions, implementers
must protect it accordingly. As countermeasures against these so-called Differential Power
Analysis (DPA) attacks, masking has been proven effective.

This operation is straightforward to mask at arbitrary order by splitting the secret key
polynomials into multiple additive shares in Rq. A masked implementation then stores
the NTT of each share of s and multiplies them to c, obtaining a shared cs. Following
this, the inverse NTT is applied share-wise. Since y is a polynomial vector in (1/N)R,
it is not trivially possible to add our shares of cs ∈ Rk+ℓ

q . On the other hand, y is not a
secret-key-dependent value. Therefore, it is not required to be protected against DPA but
only against the much stronger attacker model of a SPA. In fact, coefficient-wise shuffling
of the addition might be sufficient at this point.

Independent of whether the addition is shuffled or masked, this involves a masking
conversion from Zq to Z232 . Subsequently, the computation of 2z−y and the bound checks
can be shuffled without applying costly masking.

Table 8: Size comparison of recent lattice-based signatures.

Scheme Levels 1 & 2 Level 3 Level 5 Ref.vk sig. sum ↑ vk sig. sum vk sig. sum
EHTv41 1,110 369 1,479 — — — 1,110 369 1,479 [SSF23]
Falcon 2 897 666 1,563 — — — 897 666 1,563 [FHK+18]
HAWK3 1,024 555 1,579 — — — 1,024 555 1,579 [HPP+23]
Mitaka 4 896 713 1,609 — — — 896 713 1,609 [EFG+22]
HAETAE 992 1,474 2,466 1,472 2,349 3,821 2,080 2,948 5,028 ours
Dilithium 1,312 2,420 3,732 1,952 3,293 5,245 2,592 4,595 7,187 [DKL+18]
EagleSign5 1,824 2,144 3,968 2,842 2,336 5,160 3,616 3,488 7,104 [HDS23]
Raccoon 2,256 11,524 13,780 3,160 14,544 17,704 4,064 20,330 24,394 [dPEK+]
SQUIRRELS 682K 1,019 683K 1,600K 1,554 1,602K — — — [ENST23]
HUFU6 1,059K 2,450 1,061K 2,177K 3,540 2,181K 3,573K 4,520 3,578K [YJL+23]
1 reported attack [RS23] 2 infeasible to mask, uses floating-point arithmetic 3 new assumptions
smLIP, omSVP 4 hard to mask, proposed masked Gaussian sampler recently broken [Pre23] 5 reported
attack [Tib23] 6 uses floating-point arithmetic

Team HAETAE 43

Protecting the Hyperball Sampler. The same idea applies to the whole hyperball
sampling procedure. Since the order of the Gaussian samples is, in principle, irrelevant,
they can be generated in random order. This is particularly an advantage for randomized
HAETAE.

For the deterministic version, a masked CDT sampler, and a masked approximation
of the exponential function are required. The former was shown to be feasible recently
by Krausz et al. [KLS+23], while the latter is a sequence of multiplications, shifting by a
constant amount, and addition by constants, which is expected to be costly but feasible.

It is noteworthy that the random oracle hash (which outputs the challenge) is only
required to be protected against SPA as well. Since the input order into the hash function
cannot be randomized, the preceding values must still be protected by masking. Therefore,
if no masked hyperball sampling has been performed, we propose to perform a shuffled
point-wise multiplication of A and y, directly followed by freshly masking the resulting
coefficients. Then, a share-wise inverse NTT and a masking conversion to the Boolean
domain will be performed, which enables a secure HighBits operation. For the LSBs of
y0, generating a fresh Boolean masking during the shuffled generation of the hyperball
sample’s coefficients is sufficient.

C Additional Proofs

C.1 Useful Lemma
We will rely on the following claim.

Lemma 10. Let n be the degree of R. Let m,N, r > 0 and v ∈ Rm. Then the following
statements hold:

1. |(1/N)Rm ∩ BR,m(r)| = |Rm ∩ BR,m(Nr)|,

2. |Rm ∩ BR,m(r,v)| = |Rm ∩ BR,m(r)|,

3. Vol(BR,m(r −
√

mn
2)) ≤ |Rm ∩ BR,m(r)| ≤ Vol(BR,m(r +

√
mn
2)).

Proof. For the first statement, note that we only scaled (1/N)Rm and BR,m(r) by a
factor N . For the second statement, note that the translation x 7→ x− v maps Rm to Rm.

We now prove the third statement. For x ∈ Rm, we define Tx as the hypercube of Rm
R

centered in x with side-length 1. Observe that the Tx’s tile the whole space when x ranges
over Rm (the way boundaries are handled does not matter for the proof). Also, each of
those tiles has volume 1. As any element in Tx is at Euclidean distance at most

√
mn/2

from x, the following inclusions hold:

BR,m

(
r −
√
mn

2

)
⊆

⋃
x∈Rm∩BR,m(r)

Tx ⊆ BR,m

(
r +
√
mn

2

)
.

Taking the volumes gives the result.

C.2 Proof of Lemma 4
Proof. To ease the notation, let us use B = r′. Let y ∈ BR,m(Nr′ +

√
mn/2) and

set z = ⌊y⌉. Note that z is sampled (before the rejection step) with probability

Vol(Tz ∩ BR,m(Nr′ +
√
mn/2))

Vol(BR,m(Nr′)) ,

44 HAETAE: Shorter Lattice-Based Fiat-Shamir Signatures

where Tz is the hypercube ofRm
R centered in z with side-length 1. By the triangle inequality,

this probability is equal to 1/Vol(BR,m(Nr′ +
√
mn/2) when z ∈ BR,m(Nr′). Hence the

distribution of the output is exactly U(Rm ∩BR,m(Nr′)), as each element is sampled with
equal probability and as the algorithm almost surely terminates (its runtime follows a
geometric law of parameter the rejection probability).

It remains to consider the acceptance probability.∑
y∈Rm∩BR,m(Nr′) Vol(Ty ∩ BR,m(Nr′ +

√
mn/2))

Vol(BR,m(Nr′ +
√
mn/2)) .

By the triangle inequality and Lemma 10, it is

|Rm ∩ BR,m(Nr′)|
Vol(BR,m(Nr′ +

√
mn/2)) ≥

(
Nr′ −

√
mn/2

Nr′ +
√
mn/2

)mn

.

Note that by our choice of N , this is ≥ 1/M0.

C.3 Proof of Lemma 5
Proof. Figure 6 is the bimodal rejection sampling algorithm applied to the source
distribution U((1/N)Rm ∩ BR,m(r′)) and target distribution U((1/N)Rm ∩ BR,m(r))
(see, e.g., [DFPS22]). It then suffices that the support of the bimodal shift of the
source distribution by v contains the support of the target distribution. It is implied
by r′ ≥

√
r2 + t2.

We now consider the number of expected iterations, i.e., the maximum ratio between
the two distributions. To guide the intuition, note that if we were to use continuous
distributions, the acceptance probability 1/M ′ would be bounded by 1/M . In our case,
the acceptance probability can be bounded as follows (using Lemma 10):

1
M ′ = |(1/N)Rm ∩ BR,m(r)|

2|(1/N)Rm ∩ BR,m(r′)| = |Rm ∩ BR,m(Nr)|
2|Rm ∩ BR,m(Nr′)|

≥ Vol(BR,m(Nr −
√
mn/2))

2Vol(BR,m(Nr′ +
√
mn/2))

= 1
2

(
Nr −

√
mn/2

Nr′ +
√
mn/2

)mn

.

It now suffices to bound the latter term from below by 1/(cM) = 1/(2c(r′/r)mn). This
inequality is equivalent to:

c ≥ 1
2 ·
(

r

r −
√
mn/(2N)

)mn

·
(
r′ +
√
mn/(2N)
r′

)mn

,

and to:
N ≥ 1

c1/(mn) − 1 ·
√
mn

2

(
c1/(mn)

r
+ 1
r′

)
,

which allows to complete the proof.

C.4 Proof of Lemma 7
Proof. By Lemma 6, there exists a unique representation

r = ⌊(r + α/2)/α⌋α+ (r mod± α).

Team HAETAE 45

Algorithm 2 Unpacking routine for Â.
unpackAd(seedA, ψ)

1: if d = 0 then
2: Âgen := expandAd(seedA)
3: b̂ := ψ
4: else
5: (agen, Âgen) := expandAd(seedA)
6: b̂ := 2 · NTT(agen − ψ · 2d) mod q
7: return Â ∈ Rk×ℓ

q := (b̂ | 2 · Âgen) mod q

By identifying HighBits(r, α) and LowBits(r, α) in the above equation, we obtain the first
result.

By definition of mod± α, we have the second range.
Finally, since r 7→ ⌊(r + α/2)/α⌋ is a non-decreasing function, it is sufficient to show

that ⌊(2q − 1 + α/2)/α⌋ ≤ ⌊(2q − 1)/α⌋. We have (2q − 1 + α/2) ≤ ⌊(2q − 1)/α⌋α+ α− 1
by assumption on q. Dividing by α and taking the floor yields the result.

C.5 Proof of Lemma 8
Proof. Let r ∈ [0, 2q − 1]. Let r0, r1, r′

0, and r′
1 defined as in Definition 8. If r′

0 = r0
and r′

1 = r1, the equality r′
0 + r′

1 · αh = r0 + r1 · αh mod 2q holds vacuously.
If not, then r′

0 = r0 − 2 and r′
1 = r1 − 2(q − 1)/αh and r′

0 + r′
1αh = r0 + r1αh − 2q. By

Lemma 7, we get the first equality.
The second property stems from the second property in Lemma 7. The modifications

to r0 make r′
0 lie in the range [−αh/2− 2, αh/2).

The last property stems from the third property in Lemma 7 and the fact that if r1 = m,
then we have r′

1 = 0.

D Additional Implementation Specification
Algorithm 2 describes how to implement the unpacking of Â, and in Algorithm 3 we
demonstrate how to apply the CRT.

E Notes Regarding Hardware Implementations
Hashing and generation of randomness are the most time-consuming operations of HAETAE.
Therefore, we assume that hardware implementations will bring significant speedup and
can be competitive to Dilithium, particularly through efficient Keccak cores. Furthermore,
hardware implementations will benefit significantly from applying the offline approach.
Naturally, a module generating hyperball samples can be instantiated and run parallel to
the online phase, thus, hiding its latency behind the online phase. Moreover, high-speed
applications could adopt the offline approach with designated signing key, including the
multiplication of A and y, to further reduce the latency of the online phase.

46 HAETAE: Shorter Lattice-Based Fiat-Shamir Signatures

Algorithm 3 Mapping from (Rk
q ,Rq) to Rk

2q

fromCRT(w, x)
1: parse w as vector of integers w of size kn
2: parse x as vector of integers x of size n
3: for i := 0 to n− 1 do
4: if LSB(xi) = LSB(wi) then ▷ Implement in constant time.
5: w′

i := wi

6: else
7: w′

i := wi + q

8: for j := 1 to k − 1 do
9: for i := 0 to n− 1 do

10: if LSB(wnj+i) = 0 then ▷ Implement in constant time.
11: w′

nj+i := wnj+i

12: else
13: w′

nj+i := wnj+i + q

14: arrange w′ to w′, an element in Rk
2q

15: return w′

	Introduction
	Design rationale
	Advantages and limitations

	Preliminaries
	Notations
	Signatures
	Lattice Assumptions
	Sampling from the Continuous Hyperball-uniform
	Signature Encoding via Range Asymmetric Numeral System

	HAETAE-specific Results
	Key Generation
	Sampling in a Discrete Hyperball
	Challenge Sampling
	Bimodal Hyperball Rejection Sampling
	High and Low Bits

	The HAETAE Signature Scheme
	Uncompressed Description
	Specification of HAETAE
	Security
	HAETAE with Pre-computation
	Parameter Sets

	Implementation Specification
	Hyperball Sampler
	Signature Packing and Sizes
	Performance Reference Implementation

	Optimized Implementation for AVX2
	Vectorized Hyperball Sampling
	Performance and Comparison AVX2

	Embedded Implementation on Cortex-M4
	Polynomial Arithmetic
	Gaussian Sampler
	Stack Optimization
	Performance and Comparison Cortex-M4

	Recent lattice-based signatures
	Security against Physical Attacks
	Additional Proofs
	Useful Lemma
	Proof of Lemma 4
	Proof of Lemma 5
	Proof of Lemma 7
	Proof of Lemma 8

	Additional Implementation Specification
	Notes Regarding Hardware Implementations

