SMAUG-T: the Key Exchange Algorithm based on
Module-LWE and Module-LWR

Jung Hee Cheon' 2T, Hyeongmin Choe', Joongeun Choi®, Dongyeon Hong?,
Jeongdae Hong?, Chi-Gon Jung®, Honggoo Kang?, Janghyun Lee®, Seonghyuck
Lim?3, Aesun Park®, Seunghwan Park®!, Hyoeun Seong?, and Junbum Shin?

! Seoul National University {jhcheon, sixtail528}@snu.ac.kr
2 CryptoLab Inc. {she000, junbum.shin}@cryptolab.co.kr
3 Defense Counter-intelligence Command
{joongeuntom, wjdclrhs, honggoonin, jhlee, 794613sh, aesunparkl8,
horriblepaper}@gmail .com
4 Ministry of National Defense ghjd2000@gmail.com
5 jjoker0O41@gmail.com

Version 3.0
(February 23, 2024)

Abstract. This paper introduces SMAUG-T, a lattice-based post-quan-
tum key exchange algorithm submitted to Round 2 of the Korean Post-
Quantum Cryptography Competition (KpqC). SMAUG-T is designed by
merging SMAUG and TiGER according to the KpqC Round 1 recommen-
dation. The algorithm is based on the hardness of the MLWE and MLWR
problems defined in the module lattice and using sparse secret chosen by
SMAUG. Along with the original SMAUG parameter sets, we introduce a
TiMER (Tiny SMAUG using Error Reconciliation) parameter set suitable
for the IoT environment. With a constant-time C reference implemen-
tation, SMAUG-T achieves ciphertext sizes up to 12% and 9% smaller
than Kyber and Saber, with much faster running time, up to 103% and
58%, respectively. Compared to Sable, SMAUG-T has the same ciphertext
sizes but a larger public key, which gives a trade-off between the public
key size versus performance; SMAUG-T has 39%-55% faster encapsula-
tion and decapsulation speed in the parameter sets having comparable
security

Keywords: Lattice-based Cryptography - Post-Quantum Cryptogra-
phy - Key Encapsulation Mechanism - Module Learning With Errors
- Module Learning With Roundings.

This work is submitted to ‘Korean Post-Quantum Cryptography Competition’ (ww
w.kpqc.or.kr)).
t: Principal submitters.

www.kpqc.or.kr
www.kpqc.or.kr

Changelog

February 23, 2024 (version 3.0) The two schemes SMAUG and TiGER are
merged to SMAUG-T, taking the advantageous features from both schemes.
Along with the three SMAUG parameter sets (renamed as SMAUG-T128, 192,
256), a new parameter set TIMER is added, which allows a much lower decryption
failure probability, thanks to the error reconciliation from D2 encoding.

A countermeasure was included for the side channel analysis as some vul-
nerabilities were reported in the KpqC round 1. Hamming weight sampling has
been changed and applied to the default, and dGaussian sampling with hiding is
provided as an additional implementation.

An optimized implementation with AVX vectorization is also provided, which
reports 1.7-1.8x speed-ups. For a fair comparison to other KpqC candidates that
provide implementations using so-called 90s symmetric primitives, we also pro-
vide an optimized implementation using the 90s, which reports 2.5-3.0x speed-
ups compared to the reference code.

October 30, 2023 (version 2.0) First, we updated the hamming weight sam-
pler HWT, which was not running at a constant time due to the dependency
on the number of hash calls. The new hamming weight sampler is a hybrid of
the previous HWT algorithm, which was adopted from SamplelnBall algorithm in
Dilthium, and the constant weight word sampler [56]. We verified that the new
sampler runs at a constant time with a fixed number of hash calls. With the
new hamming weight sampler and the partly optimized reference code, SMAUG
is now 17% faster than the previous version.

Second, we give an additional security analysis for the choice of the approx-
imate discrete Gaussian sampler. Using the Rényi divergence, it is theoretically
guaranteed that the security loss comes from the approximation is minute.

Lastly, we give an additional justification for the decryption failure proba-
bility against the state-of-the-art decryption failure attacks, asserting that the
current failure probability of SMAUG is already low enough due to the attack
scenarios.

May 23, 2023 (version 1.0) First, we updated the Python script for DFP com-
putation as it was computing the decryption failure probability (DFP) wrongly.
Note that the script was missing in the submission file, but included in our web-
site. The parameter sets for NIST’s security levels 3 and 5 had higher DFPs than
they were reported in the 1st round submission. As a result, the parameter sets
are updated.

Second, we additionally compress the ciphertexts. As compression makes the
error larger, we exploit the balance between the sizes and DFP.

Third, we put additional cost estimations on some algebraic and topological
attacks: Arora-Ge [8], Coded-BKW [39], and Meet-LWE [50] attacks. We note
that the previous parameter sets were all in a secure region against these attacks;
however, for the new parameter sets, we aim to have more security margins. We

put our code for estimating the cost of the Meet-LWE attack in the Python
script.

Based on the above three updates, we changed our recommended parameter
sets. As ¢ = 1024 is not available anymore for sufficient DFPs in the security
levels 3 and 5, we move to ¢ = 2048 for those levels, resulting in slightly larger
public key and secret key sizes. The ciphertext sizes are decreased by at most
96 bytes.

We also update the reference implementation to have a constant running
time with much faster speed. It is uploaded to our website: kpgc.cryptolab.c
o.kr/smaug.

kpqc.cryptolab.co.kr/smaug
kpqc.cryptolab.co.kr/smaug

1 Introduction

SMAUG-T is an efficient post-quantum key encapsulation mechanism whose se-
curity is based on the hardness of the lattice problems. The IND-CPA security of
SMAUG-T.PKE relies on the hardness of MLWE (Module-Learning with Errors)
problem and MLWR (Module-Learning with Rounding) problem, which implies
the IND-CCA2 security of SMAUG-T.KEM.

Our SMAUG-T.KEM scheme follows the approaches in recent constructions of
post-quantum KEMs such as Lizard [26] and RLizard [48]. SMAUG-T.KEM base
their security on the module variant lattice problems: the public key does not leak
the secret key information by the hardness of MLWE problem, and the ciphertext
protects sharing keys based on the hardness of MLWR problem. SMAUG-T con-
sists of underlying public key encryption (PKE) schemes SMAUG-T.PKE , which
turn into SMAUG-T.KEM via Fujisaki-Okamoto transform.

1.1 Design rationale

The design rationale of SMAUG-T aims is to achieve small ciphertext and pub-
lic key with low computational cost while maintaining security against various
attacks. In more detail, we target the following practicality and security require-
ments considering real applications:

Practicality:

e Both the public key and ciphertext, especially the latter, which is transmitted
more frequently, need to be short in order to minimize communication costs.

e As the key exchange protocol is frequently required on various personal de-
vices, a KEM algorithm with low computational costs is more feasible than
a high-cost one.

e A small secret key is desirable in restricted environments such as embedded
or IoT devices since managing the secure zone is crucial to prevent physical
attacks on secret key storage.

Security:

e The shared key should have a large enough entropy, at least > 256 bits, to
prevent Grover’s search [38§].

e Security should be concretely guaranteed concerning the attacks on the un-
derlying assumptions, say lattice attacks.

e The low enough decryption failure probability (DFP) is essential to avoid the
attacks boosting the failure and exploiting the decryption failures [28}44].

e As KEMs are widely used in various devices and systems, countermeasures
against implementation-specific attacks should also be considered. Especially
combined with DFP, using error correction code (ECC), which recovers the
message with a number of erroneous bits to reduce decryption failures, should
be avoided since masking such ECC against side-channel attacks is a chal-
lenging problem.

MLWE and MLWR. SMAUG-T is constructed on the hardness of MLWE and
MLWR problems and follow the key structure of Lizard [26] and Ring-Lizard
(RLizard) [48]. Since LWE problem has been a well-studied problem for the last
two decades, there are many LWE-based schemes (e.g., FrodoKEM [17]). Ring
and module LWE problems are variants defined over structured lattices and re-
garded as hard as LWE. Many schemes base their security on RLWE/MLWE (e.g.,
NewHope [5], Kyber [16] and Saber [32]) for efficiency reasons. We chose the
module structure, which enables us to fine-tune security and efficiency in a much
more scalable way, unlike standard and ring versions. Since MLWR, problem is re-
garded as hard as MLWE problem unless we overuse the same secret to generate
the samples [15], we chose to use MLWR samples for the encryption. By basing
the MLWR, we reduce the ciphertext size by log ¢/logp than MLWE instances
so that more efficient encryption and decryption are possible.

Quantum Fujisaki-Okamoto transform. SMAUG-T consists of key encapsu-
lation mechanisms SMAUG-T.KEM, and public key encryption schemes SMAUG-
T.PKE. On top of the PKE schemes, we construct the KEM schemes using the
Fujisaki-Okamoto (FO) transform [35/36]. Line of works on FO transforms in
the quantum random oracle model [14}/42,/45,/54] make it possible to analyze
the quantum security, i.e., in the quantum random oracle model (QROM). In
particular, we use the FO transform with implicit rejection and no ciphertext
contributions (FOZ) following [43).

Sparse secret key and ephemeral key. We design the key generation al-
gorithm based on MLWE problem using sparse secret. We use sparse ternary
polynomials for the secret key and the ephemeral polynomial vectors based on
the hardness reduction on the LWE problem using sparse secret [25]. We take
advantage of the sparsity, e.g., significantly smaller secret keys and faster multi-
plications. In particular, the small secret makes SMAUG-T more feasible in IoT
devices having restricted resources.

Choice of moduli. All our parameter sets use powers of two moduli. This
choice makes SMAUG-T enjoy faster encapsulation using simple bit shiftings,
easy uniform samplings, and scalings. The power of 2 moduli makes it hard
to apply Number Theoretic Transform (NTT) on the polynomial multiplica-
tions. However, small enough moduli and polynomial degrees enable SMAUG-T
to achieve faster speed.

Negligible decapsulation failures. Since we base the security on the lattice
problems, noise is inherent. The decryption result of a SMAUG-T.PKE ciphertext
could be different from the original message but with negligible probability, say
decryption failure probability (DFP). We balance the sizes, DFP, and security of
SMAUG-T by fine-tuning the parameters. In particular, additional parameter set
TIMER uses the D2 encoding and error reconciliation used in NewHope [5}/53].

Parameters sets TiIMER |SMAUG-T128/SMAUG-T192|SMAUG-T256
Target security 1 1 3 5
(n, k) (256, 2) (256, 2) (256, 3) (256, 5)
(9) (1024) (1024) (2048) (2048)
(p,p") (256, 8) (256, 32) (256, 256) (256, 64)
Classical core-SVP hardness 120.0 120.0 181.7 264.5
Quantum core-SVP hardness 105.6 105.6 160.9 245.2
Decryption failure probability -132 -120 -136 -167
Secret key size 136 176 236 218
Public key size 672 672 1088 1792
Ciphertext size 608 672 1024 1472

Table 1: Security and sizes for our parameter sets.

We give estimated security and sizes for our parameter sets in Table [I} The
complete parameter sets are given in Section [f] The sizes are given in bytes, and
DFP is given logarithm base two. We include the security estimator of SMAUG-T
in the reference code package on our website: kpqc.cryptolab.co.kr/smaugl

1.2 Advantages and limitations

Advantages. The security of SMAUG-T relies on the hardness of the lattice
problems MLWE and MLWR, which enable balancing between security and ef-
ficiency. In terms of sizes, SMAUG-T has smaller ciphertext sizes compared to
Kyber or Saber, which is the smallest ciphertext size among the recent practical
lattice-based KEMs that avoid using the error correction codes. In terms of DFP,
SMAUG-T achieves low enough DFP, which is similar to that of Saber. SMAUG-T
parameter sets do not use error correction code (ECC) to avoid possible side-
channel attacks, while TIMER benefits from the single-bit error correcting D2 en-
coding, which is masking-friendly from its constructions. Implementation-wise,
encapsulation and decapsulation of SMAUG-T can be done efficiently. This makes
it much easier to implement and secure against physical attacks. We give the
constant-time C reference code and AVX optimized code, which proves the com-
pleteness and shows the efficiency of SMAUG-T.

Limitations. We use MLWR problem, which has been studied shorter than
MLWE or LWE problems; however, it has a security reduction to MLWE. MLWE
problem with a sparse secret has a similar issue but has been studied much longer
and is used in various applications, e.g., homomorphic encryptions. As we use
MLWE problem for the secret key security, larger public key sizes than Saber
are inherent. It can be seen as a trade-off between the public key size versus
performance with a smaller secret key size.

kpqc.cryptolab.co.kr/smaug

2 Preliminaries

2.1 Notation

We denote matrices with bold and upper case letters (e.g., A) and vectors with
bold type and lower case letters (e.g., b). Unless otherwise stated, the vector is
a column vector.

We define a polynomial ring R = Z[z]|/(z™ + 1) where n is a power of 2
integers and denote a quotient ring by R, = Z[z]/(¢, 2™ + 1) = Z,[z]/(z"™ + 1)
for a positive integer ¢. For an integer 7, we denote the set of polynomials of
degree less than n with coefficients in [—n,7] N Z as S,. Let S, be a set of
polynomials of degree less than n with coefficients in [—n,n) N Z. We denote
a discrete Gaussian distribution with standard deviation o as Dz ,. We define

Rényi divergence of order o between to probability distributions P and @ such

Py \ /(@D
that Supp(P) C Supp(Q) as R, (P||Q) = (erSupp(P) W) , where

Supp(D) for a distribution D is defined as Supp(D) = {z € D : D(x) # 0}.

2.2 Lattice assumptions

We first define some well-known lattice assumptions MLWE and MLWR on the
structured Euclidean lattices.

Definition 1 (Decision-M LW E,, 4 1.¢.,). For positive integers q,k,¢,n and
the dimension n of R, we say that the advantage of an adversary A solving
the decision-M LW Ey, g 1.¢.n problem is
Adv VD (A) = [Prb=1] A+ R b+ RE b+ A(A,b)]

—Prb=1] A« RE (s,e) < S} x Siib+ A(A,A-s+e)|

Definition 2 (Decision-M LW Ry, p, .i:.0,n)- For positive integers p, q, k, €, n with
q > p > 2 and the dimension n of R, we say that the advantage of an adversary
A solving the decision-M LW Ry, , ¢ k¢, problem is

Adv) I (A)=|Pr[b=1| A+ RE*“: b+ REb+ A(A,b)]
—Prb=1| AeR’é“;seSﬁ;beA(A, lp/q-A-s])]|

2.3 Public key encryption and key encapsulation mechanism
We then recap the formalisms of PKE and KEM.

Definition 3 (PKE). A public key encryption scheme is a tuple of PPT algo-
rithms PKE = (KeyGen, Enc, Dec) with the following specifications:

o KeyGen: a probabilistic algorithm that outputs a public key pk and a secret
key sk;

e Enc: a probabilistic algorithm that takes as input a public key pk and a mes-
sage p and outputs a ciphertext ct;

e Dec: a deterministic algorithm that takes as input a secret key sk and a
ciphertext ct and outputs a message .

Let 0 < § < 1. We say that it is (1 — 0)-correct if for any (pk,sk) generated from

KeyGen and p,
Pr[Dec(sk, Enc(pk, 1)) # u] <6,

where the probability is taken over the randomness of the encryption algorithm.
We call the above probability decryption failure probability (DFP). In addition,
we say that it is correct in the (Q)ROM if the probability is taken over the ran-
dommness of the (quantum) random oracle, modeling the hash function.

Definition 4 (KEM). A key encapsulation mechanism scheme is a tuple of
PPT algorithms KEM = (KeyGen, Encap, Decap) with the following specifications:

o KeyGen: a probabilistic algorithm that outputs a public key pk and a secret
key sk;

e Encap: a probabilistic algorithm that takes as input a public key pk and out-
puts a sharing key K and a ciphertext ct;

e Decap: a deterministic algorithm that takes input a secret key sk and a ci-
phertext ct and outputs a sharing key K.

The correctness of KEM is defined similarly to that of PKE.

We give the advantage function with respect to the attacks against PKE,
namely the INDistinguishability under Chosen Plaintext Attacks (IND-CPA).

Definition 5 (IND-CPA security of PKE). For a (quantum) adversary A
against a public key encryption scheme PKE = (KeyGen, Enc, Dec), we define
the IND-CPA advantage of A = (A1, As) as follows:

(M07[L175t) <_-’étl(pk)v b<_{071}5 _1
ct < Enc(pk, up); b « Aa(pk,ct, st) 210"

AdvBR A (A) =

Pr [b=1
(pk,sk)

The probability is taken over the randomness of A and (pk,sk) < KeyGen(1*).

We then define two advantage functions with respect to the attacks against
KEM, namely the INDistinguishability under Chosen Plaintext Attacks (IND-CPA)
as in PKE and the INDistinguishability under (adaptively) Chosen Ciphertext
Attacks (IND-CCA).

Definition 6 (IND-CPA and IND-CCA security of KEM). For a (quan-
tum) adversary A against a key encapsulation mechanism KEM = (KeyGen, Encap,
Decap), we define the IND-CPA advantage of A as follows:

b {0,1}; (Ko, ct) + Encap(pk);] 1‘

K; «+ K; O« A(pk,ct, Kp) Tl

AV (A) =

Pr [b=1v
(pk,sk)

The probability is taken over the randomness of A and (pk,sk) < KeyGen(1?).
The IND-CCA advantage of A is defined similarly except that the adversary can
query Decap(sk, -) oracle on any ciphertext ct’(# ct).

We can then define the (quantum) security notions of PKE and KEM in the
(Q)ROM.

Definition 7 ((Q)ROM security of PKE and KEM). For T,e > 0, we
say that a scheme S € {PKE, KEM} is (T, €)-ATK secure in the (Q)ROM if for
any (quantum) adversary A with runtime < T given classical access to O and
(quantum,) access to a random oracle H, it holds that Advs'<(A) < e, where

Enc if S = PKE and ATK € {OW-CPA, IND-CPA},
O = { Encap if S = KEM and ATK = IND-CPA,
Encap, Decap(sk,) if S = KEM and ATK = IND-CCA.

2.4 Fujisaki-Okamoto transform

Fujiskai and Okamoto proposed a novel generic transform [35,36] that turns a
weakly secure PKE scheme into a strongly secure PKE scheme in the Random
Oracle Model (ROM), and various variants have been proposed to deal with
tightness, non-correct PKEs, and in the quantum setting, i.e., QROM. Here, we
recall the FO transformation for KEM as introduced by Dent [30] and revisited
by Hotheinz et al. [42], Bindel et al. [13], and Hévelmanns et al. [43].

The original FO transforms FO#L constructs a KEM from a deterministic
PKE, i.e., a de-randomized version. The encapsulation randomly samples a mes-
sage m and uses the message’s hash value G(m) as randomness for encryption,
generating a ciphertext. The sharing key K = H(m) is generated by hashing
(with different hash functions) the message. In the decapsulation, it first de-
crypts the ciphertext and recovers the message, m/. If it fails to decrypt, it
outputs L. If the “re-encryption” of the recovered message is not equal to the
received ciphertext, it also outputs L. The sharing key can be generated by
hashing the recovered message.

In the quantum setting, however, the FO transform with “implicit rejection”
(FOi) has a tighter security proof than the original version, which implicitly
outputs a pseudo-random sharing key if the re-encryption fails. We recap the
QROM proof of Bindel et al. [13] allowing the KEMs constructed over non-
perfect PKEs to have IND-CCA security.

Theorem 1 ([13], Theorem 1 & 2). Let G and H be quantum-accessible
random oracles, and the deterministic PKE is e-injective. Then the advantage
of IND-CCA attacker A with at most Qpec decryption queries and Qg and Qg
hash queries at depth at most dg and dg, respectively, is

AV (A) < 2¢ (de +2) (ARG (BY) +8(Qa + 1)/IM])
+AdviKe (B2) + 4y drQp /M| + €,

where By is an IND-CPA adversary on PKE and Bs is an adversary against
finding a decryption failing ciphertext, returning at most Qpec ciphertezts.

3 Design choices

In this section, we explain the design choices for SMAUG-T.

3.1 MLWE public key and MLWR ciphertext

One of the core designs of SMAUG-T uses the MLWE hardness for its secret key
security and MLWR, hardness for its message security. This choice is adapted
from Lizard and RLizard, which use LWE/LWR and RLWE/RLWR, respec-
tively. Using both LWE and LWR variant problems makes the conceptual secu-
rity distinction between the secret key and the ephemeral sharing key: a more
conservative secret key with more efficient en/decapsulations. This can be viewed
as a trade-off between “conservative” and “efficient” designs. Combined with the
sparse secret, bringing the LWE-based key generation to the LWR-based scheme
enables balancing the speed and the DFP.

3.1.1 Public key. Public key of SMAUG-T consists of a vector b over a
polynomial ring R, and a matrix A, which can be viewed as an MLWE sample,

(A,b=—-ATs+e) e RI* x RE,

where s is a ternary secret polynomial with hamming weight hg, and e is an
error sampled from discrete Gaussian distribution with standard deviation o.
We hereby specify the uniform matrix sampling algorithm for A € R’;Xk in
Figure (1] It is adapted from the pseudorandom generator gen in Saber [29].

expandA(seed): > seed € {0,1}%°
1: buf «+— XOF(seed)

2: for i from 0 to k — 1 do

3: Ali] = bytes_to_Rq(buf + polybytes - i) > Convert to ring elements
4: return A

Fig. 1: Uniform random matrix sampler, expandA.

We note that the public key of SMAUG-T consists of b and the seed of A.

3.1.2 Ciphertext. The ciphertext of SMAUG-T is a tuple of a vector ¢; € R
and a polynomial c; € R,/. The ciphertext is generated by multiplying a random
vector r to the public key; then it is scaled and rounded as,

=[][5G40

10

Along with the public key, it can be treated as an MLWR sample added by a
scaled message as (A’, [p/q- A’ -r])+(0, '), where A’ is a concatenated matrix
of Aand bT.

The ciphertext can be further compressed by scaling the second component
¢o by p’/p, resulting in a shorter ciphertext but a larger error. We note that the
public key can be compressed with the same technique. However, it introduces
a more significant error, so we do not compress the public key in SMAUG-T.

3.2 Sparse secret

We use the sparse ternary distribution for the randomnesses s and r. In the fol-
lowing, we will discuss the advantages of the sparse secret and give the sampling
algorithm.

3.2.1 Advantage of using sparse secret The sparse secret is widely used
in homomorphic encryption to reduce the noise propagation during the homo-
morphic operations [191/24140] and to speed up the computations. As the lattice-
based KEM schemes have inherent decryption error from LWE or LWR noise,
the sparse secret can lower this decryption error and improve the performance
of KEMs.

Concretely, the decryption error can be expressed as (e,r) + (e,s) + es,
where s is a secret key, r is a randomness used for encryption, e < X’;k is a

noise added in public key, and (e, e3) < Xff;’ !is a noise added in ciphertext. As
the vectors r and s are binary (ternary, resp.), each coefficient of the decryption
error is an addition (signed addition, resp.) of h, variables from y,; and h + 1
variables from x.;. The magnitude of the decryption error depends greatly on the
Hamming weights h, and hg; thus, we can take advantage of the sparse secrets.

Other major advantages of sparse secrets include reducing the secret key size
and enabling fast polynomial multiplication. As the coeflicients of the secret key
are sparse with a fixed hamming weight, we can store only the information of
the non-zero coeflicients. We can further use this structure for the polynomial
multiplications, which we will describe in Section

On the other hand, as the sparse secret reduces the secret key entropy, the
hardness of the lattice problem may be decreased. For the security of LWE
problem using sparse secret, a series of works have been done, including [25]
for asymptotic security based on the reductions to worst-case lattice problems,
and [12}[33L|58] for concrete security. Independent of the secret distribution, the
module variant (MLWE) is regarded as hard as LWE problem with appropriate
parameters, including a smaller modulus. We also exploit the reductions from
ordinary MLWE to MLWE using sparse secret or small errors [20]. The MLWR
problem also has a simple reduction from MLWE independent of the secret
distribution, and its concrete security is heuristically discussed in |29).

Since SMAUG-T uses a sparse secret key s and a sparse randomness r, the se-
curity of SMAUG-T is based on the hardness of MLWE and MLWR problems us-
ing sparse secret. For the specific parameters, we exploit the lattice-estimator |2,

11

which covers most of the recent lattice attacks, and also consider some attacks
not included in the estimator. Using a smaller modulus, SMAUG-T can maintain
high security, as in Kyber or Saber.

3.2.2 Hamming weight sampler Our hamming weight sampler, HWT, is
a hybrid of the SamplelnBall algorithm in Dilithium [31] and the CWW (con-
stant weight word) sampler in BIKE [56], which have a constant running time.
However, when applying the SamplelnBall sampling from BIKE directly, there
was a need to reduce the sampling error inevitably arising from the Fisher-Yates
Shuffle. Therefore, we eliminate the cause of this deviation by using division
operations and a rejection technique. A detailed algorithm is given in Figure
which samples a ternary polynomial vector having a hamming weight of h.

HWT, (seed): > seed € {0, 1}
1: idx =0

2: (buf, rand) < XOF(seed)

3: for i fromn —h ton—1do

4: div = OxfFfFFff / i

5: remain = OxfFffffff - div * i

6: remain - remain + 1 > buf[idx] € {0,1}*2
7 if then : OxfFffffff - buf[idx] > remain

8: degree = buf[idx] / i

9: res[i] = res[degree]

10: res[degree] = (—1)rndlid > rand[idx] € {0, 1}
11: idx = idx+ 1

12: return convToIdx(res) > Storing the indexes

Fig. 2: Hamming weight sampler, HWT,.

3.3 Discrete Gaussian noise

3.3.1 Using approximate discrete Gaussian noise Our design choice
for the noise distribution in MLWE follows the conventional discrete Gaus-
sian distribution, but with approximated CDTs following the approaches in
FrodoKEM |[17]. As a result, we use a discrete Gaussian noise for the public
key generation, which is approximated to a narrow distribution. As this approx-
imated discrete Gaussian noise is used only for the public key, we can efficiently
bound the security loss from above. Considering the narrow discrete Gaussian
noise, we give a theoretical justification based on Rényi divergence to guarantee
the security of SMAUG-T.

In SMAUG-T, the narrow discrete Gaussian noise is used only for the public
key generation. So, the difference in the noise distribution only affects the dis-
tinguishing advantage between the games G5 and G in the proof of Theorem [4

12

Then, the bound for the distinguishing advantage can also be expressed as
MLWE - i) Y
(A .., (B2) - Ra(dGaussian, [Dz,0)")

assuming the pseudorandomness of dGaussian,. This is due to Lemma 5.5 in [4].
We note that the key generation calls dGaussian only nk times and that the
public key is generated only once.

The advantage bound for SMAUG-T parameter set (see Section can be
computed directly using the given formula; for TIMER parameter set (SMAUG-
T128, 192, 256, resp.), the advantage increases from 27120-0 (27120.0 " 9—181.7
and 272645 resp.) to 27116:0 (271182 9—176.9 anq 272602 yegp.) with a = 75
(200, 75 and 200, resp.). Opposed to the estimated security based on the bound
Adv?{"';}\f\,/ciyd(;aussiana (B2) given in Section this new bound provides a more
conservative security preventing some possible future attacks that target the
noise distribution.

In addition, by using one more bit for dGaussian algorithm, we can decrease
the advantage to 271197 (271196 9-181.3 anq 272636 resp.) with a = 500.
This modification will slightly decrease only the speed of key generation by
less than 1.1x. We note that the narrow Gaussian noise is already considered
when estimating the concrete security (given in Section using the explained
estimators. The analysis here provides a more conservative security, preventing
possible future attacks that target the noise distribution. We also note that in
the core-SVP methodology, we only focus on the estimated attack cost of the
underlying MLWE and MLWR problems, not based on the security reductions
(as done in most of the NIST-submitted schemes) for a fair comparison to Kyber.

3.3.2 dGaussian sampler We construct dGaussian, a constant-time approx-
imate discrete Gaussian noise sampler, upon a Cumulative Distribution Table
(CDT) but is not used during sampling, as it is expressed with bit operations. We
first scale the discrete Gaussian distribution and make a CDT approximating the
discrete Gaussian distribution. We choose an appropriate scaling factor based
on the analysis in [17,/47] using Rényi divergence. We then deploy the Quine-
McCluskey methodEI and apply logic minimization technique on the CDT. As a
result, even though our dGaussian is constructed upon CDT, it is expressed with
bit operations and is constant-time. The algorithms are easily parallelizable and
suitable for IoT devices as their memory requirement is low.

We describe dGaussian with ¢ = 1.0625 in Figure Bl and o = 1.453713 in

Figure [

3.4 Polynomial multiplication using sparsity

SMAUG-T uses the power-of-two moduli to ease the correct scaling and round-
ings. However, this makes the polynomial multiplications hard to benefit from

5 We use the python package, from https://github.com/dreylago/logicmin!

13

https://github.com/dreylago/logicmin

dGaussiani.oe2s(2):

Require: x = zox1222324T526T72329 € {0, 1}10

1: s = 5180 = 00 € {0,1}?

2! 80 = ToT1T2T3TAT5T7TS

3: 50 += (ToT3xaT526Ts) + (L1032aT5T6Ts) + (T2T3T4T5T6Ts)

4: 50 += (T2TaToxs) + (T1T3To2s)

5: 50 += (z67Ts) + (TsTers) + (TaTows) + (Trws)

6: 51 = (v12274252728) + (T3Tax5T728) + (Tex7T8)

7o s=(-1)" s > - is the arithmetic multiplication
8: return s

Fig. 3: Discrete Gaussian sampler with ¢ = 1.0625, dGaussian,.

dGaussiani 453713 (2):

Require: © = zox1222324T526L7T3ToT10 € {0, 1}11

s = s28180 = 000 € {0,1}*

s0 = (Tor1T223T57728) + (1222325 T6729) + (T1T2T32T6T7Ts)

S0 += (T1T223T5TsT9) + (ToT2T3T5T3T9)

50 += (zaw5Tex7w9) + (T32428T9) + (Tswex7ws) + (Tawex7rs) + (TaTsTsTo)
50 += (528T9) + (T6xsT9) + (X728T9) + (T7Tsw9) + (TeTaxg)

$1 = (ToZ1X4T5T6X7T9) + (T2X4T5T6X7T9) + (T3X4T5T6X7T9) + (T5X6T7TaT9)
s1 += (T1T2T3x829) + (Trwswe) + (Texso) + (Tzxswe) + (Taxswo)

52 = (T124T526T728T9) + (T2TaT5T6T78T9) + (T3T4T5T6T7T8TY)
s=(=1)%0.5 > - is the arithmetic multiplication
: return s

—_

Fig. 4: Discrete Gaussian sampler with o = 1.453713, dGaussian,,.

Number Theoretic Transform (NTT). To address this issue, we propose a new
polynomial multiplication that takes advantage of sparsity, which we adapt
from [1,|48]. Our new multiplication, given in Figure [5] is constant-time and
is faster than the previous approach. We also use a secret storing technique like
RLizard, where only the degrees of non-zero coefficients are stored in the secret
key and directly used in polynomial multiplications.

3.5 FO transform, FO;ﬁ

We construct SMAUG-T upon the FO transform with implicit rejection and with-
out ciphertext contribution to the sharing key generation, say FO;L,L. This choice
makes the encapsulation and decapsulation algorithm efficient since the sharing
key can be directly generated from a message. The public key is additionally
fed into the hash function with the message to avoid multi-target decryption
failure attacks. The IND-CCA security of the resulting KEM in the QROM is
well-studied in [13]/42,/43].

14

poly_mult_add(a, b, neg_start): >a€Rg,beES,
1l: ¢c=0

2: for i from 0 to neg_start — 1 do

3 degree = bJi]

4: for j from 0 ton — 1 do

5: cl[degree + j] = c[degree + j] + alj];
6: for ¢ from neg_start to len(b) — 1 do

7 degree = bJi]

8: for j from 0 ton — 1 do

9: c[degree + j] = c[degree + j] — alj];

10: for j from 0 ton — 1 do
11: clg] = elf] = e[n + 7];
12: return c

Fig. 5: Polynomial multiplication using sparsity.

3.6 D2 encoding

An additional parameter, TIMER, uses D2 encoding. D2 is one of the recon-
ciliation techniques that reduces bandwidth requirements, which was used in
NewHope [5]. This technique lowers the decryption failure rate and reduces the

ciphertext size by changing the error bound. In Figure[6] we give the description
of D2.

D2Enc(p € {0, ...,255}6):

1: v Ry

2: for 7 from 0 to 15 do

3: for j from 0 to 7 do

mask < ((ufi] > j) & 1
V8xi+j+0 mask & (q/Z)
Uswitj+128 < mask & (q/2)

7: returnv € R,

D2Dec(v € Rq):

1: pu < {0,...,255}16

2: for i from 0 to 255 do
3: t < |[(vito mod q) — (¢ —1)/2]

4 t < t+ |(vit128 mod q) — (¢ —1)/2]
5: t+t—q/2

6: t<—t>15

7o pfi> 3] pli> 3)|(t < (i & 7))
8: return p € {0,...,255}'¢

Fig. 6: Description of D2 encoding

15

To ensure robustness against errors, each bit of the 128-bit message u €
{0, ...,255}1¢ is encoded into 2 coefficients by D2Enc. The decoding function
D2Dec maps 2 coefficients back to the original key bit. For example, for n = 256,
take 2 coefficients (each in the range {0,...,¢ — 1}), subtract ¢/2 from each of
them, accumulate their absolute values, and set the key bit to 0 if the sum is
larger than ¢/2 or to 1 otherwise.

16

4 The SMAUG-T

4.1 Specification of SMAUG-T.PKE

We now describe the public key encryption scheme SMAUG-T.PKE in Figure
with the following building blocks:

e Extendable output function XOF for generating seeda, seeds, and seede,

e Uniform random matrix sampler expandA for deriving A from seedp,

e Discrete Gaussian sampler dGaussian, for deriving a MLWE noise e with
standard deviation o from seede,

e Hamming weight sampler HWT),, for deriving a sparse ternary s (resp. r)
with hamming weight h = hy (resp. h = h,.) from seedg (resp. seed,).

KeyGen(1*):

seed ¢+ {0, 1}56

(seeda, seed, seede) <— XOF (seed)
A + expandA(seeda) € RE*F

s + HWT,_(seeds) € S¥

e < dGaussian, (seede) € RF
b=-A" ~s+e€R’;

return pk = (seeda,b), sk =s

Enc(pk, u; seedy): > pk = (seeda,b), p € R+
1: A = expandA(seeda)

if seed, is not given then seed, + {0,1

r < HWT}, (seed,) € SF

ci=|p/qg-A-r] eRy

c2=p'/a-(b,x) +p'/t]l € Ry

return ct = (c1,c2)

}256

Dec(sk, ¢): >sk=s, c=(c1,c2)

Loyl =[t/p-(c1,s) +t/p" - c2] € Ry
2: return

Fig. 7: Description of SMAUG-T.PKE

One of the four parameter sets of SMAUG-T, namely, TIMER, has slightly
different features compared to SMAUG-T128 parameter set:

e Reduced message space: from {0,1}2% to {0,1}!?® for D2 encoding, i.e.,
< D2Enc(u).

o After decryption, the message adjustment process changed from rounding to
D2Dec.

17

The rest of the parts, including the key generations, are done exactly the
same as the description in Figure [7}
We then prove the completeness of SMAUG-T.PKE.

Theorem 2 (Completeness of SMAUG-T.PKE). Let A, b, s, e, and r are
defined as in Figure[] Let the moduli t, p, p', and q satisfy t|p|q and t|p'|q.
Let e; € Rffi) and e; € Rg be the rounding errors introduced from the scal-

ings and roundings of A -r and b” -r. That is, e, = (- A-r] modp)—
(A-r modgq) and ey = ﬁ(L%’ -(b,r)] modp’) — ((b,r) modgq). Let 6 =

Pr[|[(e,r) + (e1,s) + 2|0 > 35|, where the probability is taken over the ran-
domness of the encryption. Then SMAUG-T.PKE in Figure m is (1 — 0)-correct.
That is, for every message u and every key-pair (pk, sk) returned by KeyGen(1*),

the decryption fails with a probability less than .

Proof. By the definition of e; and e, it holds that ¢; = g -(A-r+e) modp

and ¢y = %/ - ((b,r) +e2) + p?’ - mod p’, where the coefficients of e; and es
are in ZN(—g5, 5] and ZN (=L, 55|, respectively. Thus, the decryption of the
ciphertext (cq

2p’ 2p
,C2) can be written as

u.<c1,s>+;~c4 mod t = B(<A~r,s>+<e1,s>+<b,r>+62)+4 mod ¢
— B((AT~s+b,r>+<el,s>+eg)—&-,u—‘ mod ¢
—u+ B ((e,r) + (e1,5) —&—eg)-‘ mod ¢.

This is equal to p if and only if every coefficient of (e,r) + (e1,s) + eq is in the
interval [—Z, 3&). It concludes the proof. O

Note, it can be trivially proven that the use of D2 encoding in TIMER param-
eter set does not change the completeness of SMAUG-T, since the D2 encoding
output can be seen as the message p in the above proof. The only assumption
we require is the completeness of D2 encoding.

4.2 Specification of SMAUG-T.KEM

We introduce the key encapsulation mechanism SMAUG-T.KEM in Figure
SMAUG-T.KEM is designed following the Fujisaki-Okamoto transform with im-
plicit rejection using the non-perfectly correct public key encryption SMAUG-
T.PKE. The construction of SMAUG-T.KEM involves the use of the following
symmetric primitives:

e Hash function H for hashing a public key,
e Hash function G for deriving a sharing key and a seed.

18

KeyGen(1*):

1: (pk,sk’) + SMAUG-T.PKE.KeyGen(1*)
2: d <+ {0,1}2%¢
3: return pk, sk = (sk’, d)

Encap(pk): > pk = (seeda, b)
1: p+ {0,1}%5¢

2: (K, seed) « G(p, H(pk))

3: ct + SMAUG-T.PKE.Enc(pk, u; seed)

4: return ct, K

Decap(sk, ct): > sk = (sk’,d)
' = SMAUG-T.PKE.Dec(sk’, ct)
(K',seed”) « G(u/, H(pk))
ct’ = SMAUG-T.PKE.Enc (pk, u'; seed’)
(K, -) « G(d, H(ct))
if ct # ct’ then
K « K
return K’

Fig. 8: Description of SMAUG-T.KEM

As in the SMAUG-T.PKE, we can easily construct the TIMER parameter set,
which uses the TIMER parameter set of SMAUG-T.PKE in a black-box manner,
with the following change:

e Reduced randomness space and entropy for u, from {0,1}2°¢ to {0,1}128

The Fujisaki-Okamoto transform used in Figure defers from the FOZ, trans-
form in [43] in encapsulation and decapsulation. When generating the sharing
key and randomness, SMAUG-T’s Encap utilizes the hashed public key, which
prevents certain multi-target attacks. As for Decap, if ct # ct’ holds, an alter-
native sharing key should be re-generated so as not to leak failure information
against Side-Channel Attacks (SCA). However, even when the failure informa-
tion is leaked, security can still rely on the explicit FO transform FOfn, recently
treated in [42] with a competitive bound.

We also remark that the randomly chosen message p should be hashed in
the environments using a non-cryptographic Random Number Generator (RNG)
system. A True Random Number Generator (TRNG) is recommended to sample
the message p in such devices.

We now show the completeness of SMAUG-T.KEM based on the completeness
of the underlying public key encryption scheme, SMAUG-T.PKE.

Theorem 3 (Completeness of SMAUG-T.KEM). We borrow the notations
and assumptions from Theorem[3 and Figure[§ Then SMAUG-T.KEM in Fig-
ure @ is also (1 — 8)-correct. That 1is, for every key-pair (pk,sk) generated by
KeyGen(1*), the shared keys K and K’ are identical with probability larger than
1-4.

19

Proof. The shared keys K and K’ are identical if the decryption succeeds. As-
suming the pseudorandomness of the hash function G, the probability of being
K # K’ can be bounded by the DFP of SMAUG-T.PKE. The completeness of
SMAUG-T.PKE (Theorem [2]) concludes the proof. O

4.3 Security proof

When proving the security of the KEMs constructed using FO transform in
the (Q)ROM, on typically relies on the generic reductions from one-wayness
or IND-CPA security of the underlying PKE. In the ROM, SMAUG-T.KEM has
a tight reduction from the IND-CPA security of the underlying PKE, SMAUG-
T.PKE. However, like other lattice-based constructions, the underlying PKE has
a chance of decryption failures, which makes the generic reduction unapplica-
ble [54] or non-tight [13,/42,/43] in the QROM. Therefore, we prove the IND-CCA
security of SMAUG-T.KEM based on the non-tight QROM reduction of [13] as
explained in Section [2] by proving the IND-CPA security of SMAUG-T.PKE.

Theorem 4 (IND-CPA security of SMAUG-T.PKE). Assuming pseudoran-
dommess of the underlying sampling algorithms, the IND-CPA security of SMAUG-
T. PKE can be tightly reduced to the decisional MLWE and MLWR problems.
Specifically, for any IND-CPA-adversary A of SMAUG-T.PKE, there exist adver-
saries By, By, Ba, and Bs attacking the pseudorandomness of XOF, and the pseu-
dorandomness of sampling algorithms, the hardness of MLWE, and the hardness
of MLWR, respectively, such that,

IND-CPA PR PR
Advsyiauet pre(A) < Advyor(Bo) + AdVexpandA,HWT,dGaussian(Bl)

MLWE MLWR
+ Advn,q,k,k(BQ) + Advn,p,q,k+l,k(83)'

The secret distribution terms omitted in the last two advantages (of By and
Bs) are uniform over ternary polynomials with Hamming weights hs and h,.,
respectively. The error distribution term omitted in the advantage of By is a
pseudorandom distribution following the corresponding CDT.

Proof. The proof proceeds by a sequence of hybrid games from Gy to G4 defined
as follows:

e (Go: the genuine IND-CPA game,

e (3: identical to Gy, except that the public key is changed into (A, b),

e (G5: identical to G, except that the sampling algorithms are changed into
truly random samplings,

e (G3: identical to G, except that b is randomly chosen from RZ,

e (G4: identical to Gj, except that the ciphertext is randomly choosen from
R’; X Rypr. As a result, the public key and the ciphertexts are truly random.

We denote the advantage of the adversary on each game G; as Adv;, where
Advo = AdvaGZ8r pie (A) and Advy = 0. Then, it holds that

|Advo — Adv; | < AdviSe(Bo),

20

for some adversary By against the pseudorandomness of the extendable output
function. Given that the only difference between the transcripts viewed in hybrid
games (G; and G5 is the randomness sampling, it can be concluded that

PR
|Advi — Adva| < AdVepanda HWT dGaussian (B1);

for some adversary, B; attacking the pseudorandomness of at least one of the
samplers. The difference in the games G5 and G35 is in the way the polynomial
vector b is sampled. In G5, it is sampled as part of an MLWE sample, whereas
in (33, it is randomly selected. Thus, the difference in the advantages Adv, and
Advs can be bounded by Advr'\f"lt‘l\f\,/fk(Bg), where B; is an adversary distinguishing
the MLWE samples from random. In the hybrids G5 and Gy, the only difference
is in the way the ciphertexts are generated; they are either randomly chosen
from RE x R, or generated to be (c1, [p'/p - ¢2]), where

2] 126+)

If an adversary A can distinguish the two ciphertexts, we can construct an
adversary Bs distinguishing the MLWR sample from random: for given a sample
(A,b) € R{(JkH)Xk X R’;‘H, Bs rewrites b as (by,b2) € R’; X Rp, computes
(by, |p'/p - b2]), and use A to decide the ciphertext type. The output of A will
be the output of Bs. Therefore, we can conclude the proof by observing that

|Advs — Advy| < AdVIOR L L(Bs).
|

Again, the D2 encoding does not introduce any changes in the above proof,
as the encoded messages are added to a full random MLWR instances, assuming
the MLWR hardness.

The classical IND-CCA security of SMAUG-T.KEM is then obtained directly
from FO transforms [42] in the classical random oracle model. Theorem implies
the quantum IND-CCA security of SMAUG-T.KEM in the quantum random oracle
model.

The TIMER parameter set is well-suited for lightweight IoT environments
thanks to its smaller ciphertext size. However, the use of D2 encoding and the
smaller randomness space may affect security in the future. For better-ensuring
security when using TIMER parameter set, it is recommended to limit the number
of Encap/Decap by considering the operating environment.

21

5 Parameter selection and concrete security

In this section, we first give a concrete security analysis of SMAUG-T and provide
the recommended parameter (SMAUG-T) and additional parameter (TIMER)
sets.

5.1 Concrete security estimation

We exploit the best-known lattice attacks to estimate the concrete security of
SMAUG-T.

5.1.1 Core-SVP methodology. Most of the known attacks are essentially
finding a nonzero short vector in Euclidean lattices, using the Block—Korkine—
Zolotarev (BKZ) lattice reduction algorithm [22,}41,/55]. BKZ has been used
in various lattice-based schemes [3}|16}/31}/34,/59]. The security of the schemes
is generally estimated as the time complexity of BKZ in core-SVP hardness
introduced in [5). It depends on the block size 8 of BKZ reporting the best
performance. According to Becker et al. |10] and Chailloux et al. [21], the (-
BKZ algorithm takes approximately 20-2928+0(8) and 20-2578+0(8) time in the
classical and quantum setting, respectively. The polynomial factors and o(S)
terms in the exponent are ignored. We use the lattice estimator [2] to estimate
the concrete security of SMAUG-T in core-SVP hardness.

5.1.2 Beyond Core-SVP methodology. In addition to lattice reduction
attacks, we also take into consideration the cost of other types of attacks, e.g.,
algebraic attacks like the Arora-Ge attack or Coded-BKW attacks, and their
variants. In general, these attacks have considerably higher costs and memory
requirements compared to previously introduced attacks.

We also focus on the attacks not considered in the lattice estimator, specifi-
cally those that target sparse secret, such as Meet-LWE [50] attack. This attack is
inspired by Odlyzko’s Meet-in-the-Middle approach and involves using represen-
tations of ternary secrets in additive shares. The asymptotic attack complexity
is claimed as 8%25; however, it is far from the estimated attack costs in SMAUG-
T parameter sets. Even the estimated cost has a significant gap with the real
attack, due to the hidden costs behind the estimation.

We summarize the costs of the algebraic and combinatorial attacks in Ta-
ble Bl Attack costs for Arora-Ge and Coded-BKW are estimated with lattice
estimator [2]. The estimated cost of Arora-Ge attack on SMAUG-T256 is not
determined by lattice-estimator, outputting oo, which is at least a thousand bits
of security. The costs for the Meet-LWE attack are estimated with a python
SCI‘iptﬂ based on May’s analysis [50], best among Rep-1 and Rep-2.

" The script can be found on the team SMAUG-T website: http://kpqc.cryptolab
.co.kr/

22

http://kpqc.cryptolab.co.kr/
http://kpqc.cryptolab.co.kr/

Parameters sets TiIMER | SMAUG-T128 | SMAUG-T192 | SMAUG-T256
Target security 1 1 3 5
Classical core-SVP 120.0 120.0 181.7 264.5
Algebraic & Combinatorial attacks
Arora.Ce time 653.8 741.3 983.4 -
(mem) (317.2) (598.0) (636.5) -
BKW time 135.3 144.7 202.0 274.6
(mem) (123.2) (133.7) (190.7) (256.9)
time 144.3 164.3 213.8 283.2
Meet-LWE | em) || (123.7) (143.7) (192.4) (254.7)

Table 2: Attack costs beyond Core-SVP.

5.1.3 MLWE hardness. We estimated the cost of the best-known attacks
for MLWE, including primal attack, dual attack, and their hybrid variations,
in the core-SVP hardness. We remark that any MLWE,, 4 ¢, instance can be
viewed as an LWE i ne,, instance. Although the MLWE problem has an addi-
tional algebraic structure compared to the LWE problem, no attacks currently
take advantage of this structure. Therefore, we assess the hardness of the MLWE
problem based on the hardness of the corresponding LWE problem. We also con-
sider the distributions of secret and noise when estimating the concrete security
of SMAUG-T. We have also analyzed the costs of recent attacks that aim to
target the MLWE problem with sparse secrets. Our narrow discrete Gaussian
sampler’s tail bound is considered in estimating the security using the lattice
estimator.

5.1.4 MLWR hardness. To measure the hardness of the MLWR problem,
we treat it as an MLWE problem since no known attack utilizes the deterministic
error term in the MLWR structure. Banerjee et al. [9] provided the reduction
from the MLWE problem to the MLWR problem, which was subsequently im-
proved in [6}/7[15]. Basically, for given an MLWR sample (A, |p/q-A-s] mod p)
with uniformly chosen A < R¥ and s <— R}, it can be expressed as (A, p/q-(A-s
mod ¢) + e mod p). The MLWR sample can be converted to an MLWE sample
over R, by multiplying ¢/p as (A,b = A-s+¢/p-e mod ¢). Assuming that
the error term in the resulting MLWE sample is a random variable, uniformly
distributed within the interval (—q/2p, q/2p], we can estimate the hardness of
the MLWR problem as the hardness of the corresponding MLWE problem.

5.2 Parameter sets

The SMAUG-T is parameterized by various integers such as n, k, q, p, p’, t, hs and
h,, as well as a standard deviation o > 0 for the discrete Gaussian noise. Our
main focus when selecting these parameters is to minimize the ciphertext size
while maintaining security. We first set our ring dimension to n = 256 and
plaintext modulus to ¢ = 2 to have a 256-bit (for SMAUG-T128, 192, 256) or

23

Parameters sets TiMER SMAUG-T128 | SMAUG-T192 | SMAUG-T256
Security level 1 1 3 5
n 256 256 256 256
k 2 2 3 5
(¢,p) (1024, 256) (1024, 256) (2048, 256) (2048, 256)
(P, t) (8,2) (32,2) (256,2) (64,2)
(hs, hr) (100, 132) (140,132) (198,151) (176, 160)
o 1.453713 1.0625 1.453713 1.0625
Classical core-SVP 120.0 120.0 181.7 264.5
Quantum core-SVP 105.6 105.6 160.9 245.2
Beyond core-SVP 135.3 144.7 202.0 274.6
DFP -132.9 -119.6 -136.1 -167.2
Secret key 136 176 236 218
Public key 672 672 1088 1792
Ciphertext 608 672 1024 1472

Table 3: The NIST security level, selected parameters, classical and quantum
core-SVP hardness and security beyond core-SVP (see Section [5.1.2), DFP (in
log,), and sizes (in bytes) of SMAUG-T.

128-bit (for TIMER) message space. The sharing-key space is 256-bit for all the
parameter sets. Then we search for parameters with enough security to offer the
smallest ciphertext size. Starting from parameters with a tiny ciphertext size, we
increase the ciphertext size, hg, h,, and o, and search for the parameters with
enough security. Once we have them, we compute the DFP. If it is low enough, we
can choose the compression parameter p’, but if it is not, we continue searching
for appropriate parameters. The compression factor p’ can be set to a small
integer if the DFP is low enough. Else, we can keep p’ = 256 as in the level-3
parameter, and not compress.

Table [3] shows the three recommended parameter sets and an additional pa-
rameter set of SMAUG-T, corresponding to NIST’s security levels 1, 3, and 5.
For security levels 3 and 5, we can not find the parameters for ¢ = 1024, so
we use ¢ = 2048. Especially, the standard deviation ¢ = 1.0625 is too low for
security level 3, so we move to o = 1.453713. For the level-5 parameters set, we
use k = 5 since k = 4 is too small for enough security.

TiMER, an additional parameter set, maximizes the efficiency of SMAUG-
T128. It has a 64-byte smaller ciphertext size than SMAUG-T128 and 32 bytes
smaller than the state-of-art scheme(aspect ciphertext size), lightsable [51], and
TiGER [52]. TIMER sufficiently lowers DFP through D2 encoding and error rec-
onciliation techniques. Thanks to this lowered DFP, p’ was reduced from 32 to
8, further compressing the ciphertext. DFP, after reducing p’ and still small
enough, was used as a trade-off to improve performance. In other words, to im-
prove performance while maintaining security strength, the standard deviation
o was increased from 1.0625 to 1.453713, and the Hamming weight of the secret
key hs was reduced from 140 to 100. Because SMAUG-T uses sparse polynomial
multiplication, as shown in Figure[5] it computes n times less than the reduction

24

of hs. It speeds up the overall computation, even though it adds a small overhead
required for D2 encoding and error reconciliation.

The core-SVP hardness is estimated via the lattice estimator [2] using the
cost model “ADPS16” introduced in [5] and “MATZOV” [49]. In the table, the
smaller cost is reported. We assumed that the number of 1s is equal to the
number of —1s for simplicity, which conservatively underestimates security.

The security beyond core-SVP is estimated via the lattice estimator [2] and
the Python script implementing the Meet-LWE attack cost estimation. It shows
the lowest attack costs among coded-BKW, Arora-Ge, and Meet-LWE attack
and their variants. We note that these attacks require a minimum memory size
of 2130 to 2260,

5.3 Decryption failure probability

As our primary goal is to push the efficiency of the lattice-based KEMs toward
the limit while keeping roughly the same level of security, we follow the frame-
works given in the NIST finalist Saber. In particular, we set the DFP to be
similar to or lower than that of Saber’s, except for TIMER parameter set.

The impact of DFP on the security of KEM is still being investigated. How-
ever, we can justify our decision to follow Saber’s choice and why it is sufficient
for real-world scenarios. To do this, we make the following assumptions:

1. Each key pair has a limit of Qimic = 2% decryption queries, as specified in
NIST’s proposal call.

2. There are approximately people worldwide, each with hundreds of de-
vices. Each device has hundreds of usable public keys broadcasted for KEM.

3. We introduce an observable probability and assume it is far less than 2720,
Even though the decryption failure occurs, it can only be used for an attack
when observed. Attackers can observe it through a side-channel attack, which
enables the observation of decapsulation failures in the mounted device, or
through direct communications after key derivation, allowing the detection
of decryption failures with a communication per key pair. We assume the
two cases can occur much less than 272°, as they require physically mounted
devices or communications with shared keys.

233

Based on these assumptions, we can deduce that the number of observable
decryption failures can be upper bounded by 264+33+8+8.9-20 — 993 Baged on
the best-known (multi-target) attacks for Saber |27, Figure 6 (a)], the quantum
cost for finding a single failing ciphertext of SMAUG-T192 is much higher than
2160 as desiredf] For security level 5, we refer to Figure 7(a) in [27], which
shows that the quantum cost for finding a single failure is much higher than
2245 Regardless of the attack cost estimated above, the scenario of checking
the failures in more than 240 different devices is already way too far from the
real-world attack scenario.

& Specifically, the number of observable failures must be larger than 1/3 in [27] to
observe at least one failing ciphertext. That is, 8 should be larger than 2°°. The
quantum cost is 1/8+/a.

25

6 Implementation

In this section, we consider the implementation of SMAUG-T and present the
performance for each parameter set. We provide a few C implementations: The
constant-time reference implementation of SMAUG-T parameter sets can be
found in the reference_implementation, and an optimized implementation uti-
lizing AVX2 intrinsics on Intel(R) is included in the optimized_implementation.
Additionally, the TIMER parameter set, designed for lightweight environments,
is available in the additional_implementation. Our implementations, along
with the supporting scripts, are accessible on our website: www.kpgc.cryptol
ab.co.kr/smaug.

6.1 Implementation considerations

The most critically time-consuming component in SMAUG-T is the symmetric
primitive. We chose SHA3 as the symmetric variant, which occupies about 30%
to 40% of the cycles according to the reference implementation. Being based on
the Keccak permutation, SHA3 is not the fastest algorithm in software. Thus its
usage may impose performance constraints compared to 90s symmetrics (AES,
SHA2). However, similar to how ARM provides hardware acceleration for SHA3
on ARMVS processors, this is not expected to be a problem in the future.

To measure the achieved performance of SMAUG-T, we also provide an imple-
mentation that uses 90s symmetrics. This implementation serves as benchmark
code to demonstrate optimized performance by utilizing AES and SHA2 instead
of other symmetric algorithms. Consequently, this leads to differences in the test
vector when compared to the reference implementation. The optimized imple-
mentation using 90s symmetric can be found at optimized_implementation/
kem-90s/.

6.2 Performance

In the reference implementation and additional implementation, we instantiate
the hash functions G, H and the extendable output function XOF with the fol-
lowing symmetric primitives: G is instantiated with SHAKE256, H is instantiated
with SHA3-256, and XOF is instantiated with SHAKE128.

Table 4] presents the performance results of SMAUG-T. For a fair compari-
son, we also performed measurements on the same system with identical settings
of the reference implementation of Kyber and Sabelﬂ All benchmarks are ob-
tained on one core of an Intel(R) Core(TM) i7-10700K CPU processor with a
clock speed of 3.80GHz. The benchmarking machine has 64 GB of RAM and
runs Debian GNU/Linux with Linux kernel version 5.4.0. The implementation
is compiled with gcc version 9.4.0, and the compiler flags as indicated in the
CMakeLists included in the submission package.

9 From |github.com/pg-crystals/kyber (518de24) and github.com/KULeuven—COS
IC/SABER (£7£39e4), respectively.

26

www.kpqc.cryptolab.co.kr/smaug
www.kpqc.cryptolab.co.kr/smaug
github.com/pq-crystals/kyber
github.com/KULeuven-COSIC/SABER
github.com/KULeuven-COSIC/SABER

Cycles Cycles (ratio)

Schemes KeyGen Encap Decap KeyGen Encap Decap
Kyber512 131560 162472 189030 1.87 2.16 1.94
LightSaber 93752 122176 133764 1.33 1.63 1.37
SMAUG-T128 70398 75082 97368 1 1 1
TiMER 70348 71748 90978 1 0.96 0.93
Kyber768 214160 251308 285378 1.57 2 1.78
Saber 18722 224686 239590 1.37 1.78 1.49
SMAUG-T192 136436 126114 160354 1 1 1
Kyber1024 332470 371854 415498 1.43 1.60 1.53
FireSaber 289278 347900 382326 1.25 1.49 1.41
SMAUG-T256 231824 232854 271794 1 1 1

Table 4: Median cycle counts of 1000 executions for Kyber, Saber, and SMAUG-
T (and their ratios). The C implementations without AVX optimizations.

In the optimized implementation, we instantiate the hash functions G, H and
the extendable output function XOF with the following symmetric primitives: G
and XOF is instantiated with SHA2-512, H is instantiated with SHA2-256, and
XOF is instantiated with AES.

SMAUG-T optimized implementation using AVX2 intrinsics achieved a speed
up of about x1.7 - x1.8, while the optimized implementation using 90s symmetric
achieved a speed up of about x2.5 - x3. All measurement methods and conditions
are identical to those of Table [

27

7 Side Channel Analysis

SMAUG-T is a scheme based on MLWE and MLWR, that has many similarities
to Kyber and Saber. As a result of the NIST competition, much research has
been conducted on side-channel analysis and countermeasures for Kyber and
Saber [111[18]. These previous findings can also be applied to SMAUG-T. There-
fore, we decided to focus our analysis on the characteristic designs in which
SMAUG-T differs from Kyber or saber. Specifically, the characteristic designs are
dGaussian sampling, Sparse Hamming weight sampling, D2 encoding and error
reconciliation, and Sparse polynomial multiplication. Additionally, KpqC round
1 focused on timing attacks. Power/EM-based attacks are becoming increas-
ingly critical with advanced attack techniques and tools, necessitating proactive
countermeasures. In particular, the recently announced clustering attack [57] has
become a more lethal threat due to the small number of traces and advances
in deep learning technology. So, we discuss the security of SMAUG-T against
physical attacks based on power/EM.

In this section, Continued research on side-channel analysis is necessary, but
in the first round of KpqC, SMAUG and TiGER responded to side-channel anal-
ysis for characteristic designs.

7.1 Hamming weight sampler

In the KpqC round 1 SMAUG scheme, rejection sampling generated uniform dis-
tribution. This sampling had the vulnerability of constant-time implementation.
Heesoek Kim reported that this vulnerability could cause a timing attack. To
resolve this problem, SMAUG v2.0 utilized the SamplelnBall from BIKE.

However, SamplelnBall is based on the Fisher-Yates Shuffling, and it has a
non-negligible probability deviation where the probability of selecting a random
number changes as the range of random selection changes. While BIKE proved
this issue to be negligible in BIKE parameters when applied directly to SMAUG-
T, we found there is a significant probability deviation when sampling a uniform
distribution [56].

This error is based on complete uniform sampling and cannot be performed
without rejection when the power of 2 is not a multiple of i + 1. SMAUG v2.0
is applied as is, and a probability deviation as described by the equation below
occurs.

€t = 232 mod 1%
511 511 . 511 . 511

1 ? e ? €t
11 L= gptre) = H(m_ﬂ—l)% H(H—l)(l_ 2 Y

1=380 1=380 =380 =380

Calculating the above equation using the SMAUG-T parameters, it can be
shown that the random number distribution is not completely uniform, with a
deviation of about 2728, In BIKE, it was proven that the deviation caused by

the same reason is safe against IND-CCA attacks. However, this is not the case
in SMAUG-T.

28

Therefore, we eliminated the cause of this deviation by using division oper-
ations and rejection technique.

7.2 dGaussian, sampler

Previous PQC algorithms utilizing Gaussian errors have employed various Gaus-
sian samplers. However, designing Gaussian samplers that operate in constant
time is challenging, and BLISS has suffered from timing attacks [37]. We adopted
dGaussian,, a constant-time implementation well-known for its efficacy, into
SMAUG-T to mitigate timing attacks.

However, power/EM-based SCA issues for dGaussian, arose during KpqC
round 1. Applying this vulnerability in real-world environments may be challeng-
ing; however, recent advancements in deep-learning and clustering technologies
suggest that this attack could become a practical vulnerability. Therefore, we
applied a countermeasure to dGaussian, to prevent these attacks. In the public
key generation process of SMAUG-T, the dGaussian, function produces integer
intermediate values within the range of [-3, 3] when generating Gaussian errors.
The significant hamming weight difference between positive and negative values
distinguishes these values into two sets. (ex, {-3, -2, -1} / {0, 1, 2, 3}) With this
distinction and linear algebraic approach, there is the possibility of recovering
secret keys or reducing candidates.

Therefore, countermeasures are necessary. First, We consider masking tech-
niques. However, designing a general random masking scheme efficiently in sit-
uations with numerous nonlinear bit-operations can be challenging and may
incur significant overhead. For example, Krausz et al. [46] have recently pro-
posed masking methods for the fixed hamming weight sampler; their efficiency
is lacking, so we see it as future work. Hiding can be considered as another coun-
termeasure. This attack involves logic that categorizes coefficients during the key
generation process, making it difficult to distinguish which coefficients belong to
which set is sufficient to respond effectively. Therefore, applying hiding would be
more effective than masking. The Errors are calculated in Fig. 3| and [4| and then
stored sequentially in each index. We applied the Fisher-Yates shuffle algorithm
only to the corresponding loops and the loops where those values are utilized.
Table [5| shows the overhead resulting from the application of countermeasures.

’Schemes TiIMER | SMAUG-T128 | SMAUG-T192 | SMAUG-T256
Original 70348 70398 136436 231824
Countermeasure 122258 124426 241444 491184
Overhead 76.7% 76.9% 111.8% 73.7%

Table 5: Results of the application of the countermeasure to clustering SCA in
the dGaussian, - Median cycle counts of 1000 executions. The reference code is
in additional_implementation/side_channel_countermeasure

29

Overhead occurs only during key generation, with no involvement in the encryp-
tion and decryption. In environments such as TLS, key generation is typically
performed on servers with high-performance capabilities and operates less fre-
quently than encryption. Therefore, such countermeasures will have a minimal
impact on the cryptographic system.

7.3 D2 encoding and error reconciliation

As mentioned earlier, D2 encoding and error reconciliation were used in NewHope,
and due to modulus reduction, the D2 implementation was not constant-time. In
NewHope, they solved this problem with constant-time Barrett reduction. On
the other hand, in TIMER, since the modulus is all powers of 2, the modulus
reduction can be replaced by a shift operation, eliminating the attack surface.

However, during the KpqC round 1, Hee-Seok Kim reported the vulnerability
related to power analysis caused by differences in the Hamming weight of the
mask variable in the D2 encoding process. This attack was complemented in
TiGER v2.1 by changing the mask variable to 1 and 0 and applying a counter-
measure to minimize the Hamming weight difference. TIMER also prevents such
vulnerability with the same countermeasure.

Acknowledgments. Part of this work was done while Dongyeon Hong was in
CryptoLab Inc. Part of this specification is from its conference version [23)].

30

References

10.

11.

12.

13.

14.

15.

Akleylek, S., Alkim, E., Tok, Z.Y.: Sparse polynomial multiplication for lattice-
based cryptography with small complexity. The Journal of Supercomputing 72,
438-450 (2016)

. Albrecht, M.R., Player, R., Scott, S.: On the concrete hardness of learning with

errors. Journal of Mathematical Cryptology 9(3), 169-203 (2015)

Alkim, E., Barreto, P.S.L.M., Bindel, N., Kramer, J., Longa, P., Ricardini, J.E.:
The lattice-based digital signature scheme gtesla. Cryptology ePrint Archive, Paper
2019/085 (2019), https://eprint.iacr.org/2019/085

Alkim, E., Bos, J., Ducas, L., Longa, P., Mironov, 1., Naehrig, M., Nikolaenko, V.,
Peikert, C., Raghunathan, A., Stebila, D.: Frodokem: Algorithm specifications and
supporting documentation (2021)

Alkim, E., Ducas, L., Péppelmann, T., Schwabe, P.: Post-quantum key exchange
- A new hope. In: Holz, T., Savage, S. (eds.) USENIX Security 2016. pp. 327-343.
USENIX Association (Aug 2016)

Alperin-Sheriff, J., Apon, D.: Dimension-preserving reductions from lwe to lwr.
Cryptology ePrint Archive, Paper 2016/589 (2016), https://eprint.iacr.org/
2016/589

Alwen, J., Krenn, S., Pietrzak, K., Wichs, D.: Learning with rounding, revisited.
In: Canetti, R., Garay, J.A. (eds.) Advances in Cryptology — CRYPTO 2013. pp.
57-74. Springer Berlin Heidelberg, Berlin, Heidelberg (2013)

Arora, S., Ge, R.: New algorithms for learning in presence of errors. In: Aceto,
L., Henzinger, M., Sgall, J. (eds.) Automata, Languages and Programming. pp.
403-415. Springer Berlin Heidelberg, Berlin, Heidelberg (2011)

Banerjee, A., Peikert, C., Rosen, A.: Pseudorandom functions and lattices. In:
Pointcheval, D., Johansson, T. (eds.) Advances in Cryptology — EUROCRYPT
2012. pp. 719-737. Springer Berlin Heidelberg, Berlin, Heidelberg (2012)

Becker, A., Ducas, L., Gama, N., Laarhoven, T.: New directions in nearest neighbor
searching with applications to lattice sieving, pp. 10-24. Society for Industrial and
Applied Mathematics (2016). https://doi.org/10.1137/1.9781611974331.ch2
Beirendonck, M.V., D’anvers, J.P., Karmakar, A., Balasch, J., Verbauwhede, I.: A
side-channel-resistant implementation of saber. J. Emerg. Technol. Comput. Syst.
17(2) (apr 2021). https://doi.org/10.1145/3429983

Bi, L., Lu, X., Luo, J., Wang, K.: Hybrid dual and meet-LWE attack. In: Nguyen,
K., Yang, G., Guo, F., Susilo, W. (eds.) ACISP 22. LNCS, vol. 13494, pp. 168-188.
Springer, Heidelberg (Nov 2022). https://doi.org/10.1007/978-3-031-22301
-3_9

Bindel, N., Hamburg, M., Hovelmanns, K., Hiilsing, A., Persichetti, E.: Tighter
proofs of CCA security in the quantum random oracle model. In: Hofheinz, D.,
Rosen, A. (eds.) TCC 2019, Part II. LNCS, vol. 11892, pp. 61-90. Springer, Hei-
delberg (Dec 2019). https://doi.org/10.1007/978-3-030-36033-7_3

Birkett, J., Dent, A.W.: Relations among notions of plaintext awareness. In:
Cramer, R. (ed.) Public Key Cryptography — PKC 2008. pp. 47-64. Springer Berlin
Heidelberg, Berlin, Heidelberg (2008)

Bogdanov, A., Guo, S., Masny, D., Richelson, S., Rosen, A.: On the hardness of
learning with rounding over small modulus. In: Kushilevitz, E., Malkin, T. (eds.)
Theory of Cryptography. pp. 209—224. Springer Berlin Heidelberg, Berlin, Heidel-
berg (2016)

31

https://eprint.iacr.org/2019/085
https://eprint.iacr.org/2016/589
https://eprint.iacr.org/2016/589
https://doi.org/10.1137/1.9781611974331.ch2
https://doi.org/10.1145/3429983
https://doi.org/10.1007/978-3-031-22301-3_9
https://doi.org/10.1007/978-3-031-22301-3_9
https://doi.org/10.1007/978-3-030-36033-7_3

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

Bos, J., Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky, V., Schanck, J.M.,
Schwabe, P., Seiler, G., Stehlé, D.: Crystals-kyber: a cca-secure module-lattice-
based kem. In: 2018 IEEE European Symposium on Security and Privacy (Eu-
roS&P). pp. 353-367. IEEE (2018)

Bos, J.W., Costello, C., Ducas, L., Mironov, 1., Naehrig, M., Nikolaenko, V., Raghu-
nathan, A., Stebila, D.: Frodo: Take off the ring! Practical, quantum-secure key
exchange from LWE. In: Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers,
A.C., Halevi, S. (eds.) ACM CCS 2016. pp. 1006-1018. ACM Press (Oct 2016).
https://doi.org/10.1145/2976749.2978425

Bos, J.W., Gourjon, M., Renes, J., Schneider, T., van Vredendaal, C.: Masking
kyber: First- and higher-order implementations. IACR TCHES 2021(4), 173-214
(2021). https://doi.org/10.46586/tches.v2021.14.173-214, https://tches.
iacr.org/index.php/TCHES/article/view/9064

Bossuat, J.P., Troncoso-Pastoriza, J.R., Hubaux, J.P.: Bootstrapping for approxi-
mate homomorphic encryption with negligible failure-probability by using sparse-
secret encapsulation. In: Ateniese, G., Venturi, D. (eds.) ACNS 22. LNCS, vol.
13269, pp. 521-541. Springer, Heidelberg (Jun 2022). https://doi.org/10.1007/
978-3-031-09234-3_26

Boudgoust, K., Jeudy, C., Roux-Langlois, A., Wen, W.: On the hardness of module
learning with errors with short distributions. Journal of Cryptology 36(1), 1 (Jan
2023).https://doi.org/lo.1007/500145—022-09441—3

Chailloux, A., Loyer, J.: Lattice sieving via quantum random walks. In: Tibouchi,
M., Wang, H. (eds.) Advances in Cryptology - ASIACRYPT. pp. 63-91 (2021)
Chen, Y., Nguyen, P.Q.: BKZ 2.0: Better lattice security estimates. In: Lee, D.H.,
Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 1-20. Springer, Heidel-
berg (Dec 2011). https://doi.org/10.1007/978-3-642-25385-0_1

Cheon, J.H., Choe, H., Hong, D., Yi, M.: Smaug: Pushing lattice-based key en-
capsulation mechanisms to the limits. Cryptology ePrint Archive, Paper 2023/739
(2023), https://eprint.iacr.org/2023/739

Cheon, J.H., Han, K., Kim, A., Kim, M., Song, Y.: Bootstrapping for approximate
homomorphic encryption. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018,
Part I. LNCS, vol. 10820, pp. 360-384. Springer, Heidelberg (Apr / May 2018).
https://doi.org/10.1007/978-3-319-78381-9_14

Cheon, J.H., Han, K., Kim, J., Lee, C., Son, Y.: A practical post-quantum public-
key cryptosystem based on spLWE. In: Hong, S., Park, J.H. (eds.) ICISC 16. LNCS,
vol. 10157, pp. 51-74. Springer, Heidelberg (Nov / Dec 2017). https://doi.org/
10.1007/978-3-319-53177-9_3

Cheon, J.H., Kim, D., Lee, J., Song, Y.: Lizard: Cut off the taill A practical post-
quantum public-key encryption from LWE and LWR. In: Catalano, D., De Prisco,
R. (eds.) SCN 18. LNCS, vol. 11035, pp. 160-177. Springer, Heidelberg (Sep 2018).
https://doi.org/10.1007/978-3-319-98113-0_9

D’Anvers, J.P., Batsleer, S.: Multitarget decryption failure attacks and their ap-
plication to saber and kyber. In: Hanaoka, G., Shikata, J., Watanabe, Y. (eds.)
PKC 2022, Part 1. LNCS, vol. 13177, pp. 3-33. Springer, Heidelberg (Mar 2022).
https://doi.org/10.1007/978-3-030-97121-2_1

D’Anvers, J.P., Guo, Q., Johansson, T., Nilsson, A., Vercauteren, F., Verbauwhede,
I.: Decryption failure attacks on ind-cca secure lattice-based schemes. In: Lin, D.,
Sako, K. (eds.) Public-Key Cryptography — PKC 2019. pp. 565-598. Springer In-
ternational Publishing, Cham (2019)

32

https://doi.org/10.1145/2976749.2978425
https://doi.org/10.46586/tches.v2021.i4.173-214
https://tches.iacr.org/index.php/TCHES/article/view/9064
https://tches.iacr.org/index.php/TCHES/article/view/9064
https://doi.org/10.1007/978-3-031-09234-3_26
https://doi.org/10.1007/978-3-031-09234-3_26
https://doi.org/10.1007/s00145-022-09441-3
https://doi.org/10.1007/978-3-642-25385-0_1
https://eprint.iacr.org/2023/739
https://doi.org/10.1007/978-3-319-78381-9_14
https://doi.org/10.1007/978-3-319-53177-9_3
https://doi.org/10.1007/978-3-319-53177-9_3
https://doi.org/10.1007/978-3-319-98113-0_9
https://doi.org/10.1007/978-3-030-97121-2_1

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

D’Anvers, J.P., Karmakar, A., Roy, S.S., Vercauteren, F.: Saber: Module-LWR
based key exchange, CPA-secure encryption and CCA-secure KEM. In: Joux, A.,
Nitaj, A., Rachidi, T. (eds.) AFRICACRYPT 18. LNCS, vol. 10831, pp. 282-305.
Springer, Heidelberg (May 2018). https://doi.org/10.1007/978-3-319-89339
-6_16

Dent, A.W.: A designer’s guide to kems. In: Cryptography and Coding: 9th IMA
International Conference, Cirencester, UK, December 16-18, 2003. Proceedings 9.
pp. 133-151. Springer (2003)

Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky, V., Schwabe, P., Seiler, G., Stehlé,
D.: CRYSTALS-Dilithium: A lattice-based digital signature scheme. IACR TCHES
2018(1), 238-268 (2018). https://doi.org/10.13154/tches.v2018.i1.238-268),
https://tches.iacr.org/index.php/TCHES/article/view/839

D’Anvers, J.P., Karmakar, A., Sinha Roy, S., Vercauteren, F.: Saber: Module-lwr
based key exchange, cpa-secure encryption and cca-secure kem. In: International
Conference on Cryptology in Africa. pp. 282-305. Springer (2018)

Espitau, T., Joux, A., Kharchenko, N.: On a dual/hybrid approach to small secret
LWE - A dual/enumeration technique for learning with errors and application to
security estimates of FHE schemes. In: Bhargavan, K., Oswald, E., Prabhakaran,
M. (eds.) INDOCRYPT 2020. LNCS, vol. 12578, pp. 440-462. Springer, Heidelberg
(Dec 2020). https://doi.org/10.1007/978-3-030-65277-7_20

Fouque, P.A., Hoffstein, J., Kirchner, P., Lyubashevsky, V., Pornin, T., Prest, T,
Ricosset, T., Seiler, G., Whyte, W., Zhang, Z.: Falcon: Fast-fourier lattice-based
compact signatures over ntru. Submission to the NIST’s post-quantum cryptogra-
phy standardization process 36(5) (2018)

Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric encryp-
tion schemes. In: Wiener, M.J. (ed.) CRYPTO’99. LNCS, vol. 1666, pp. 537-554.
Springer, Heidelberg (Aug 1999). https://doi.org/10.1007/3-540-48405-1_34
Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric en-
cryption schemes. Journal of Cryptology 26(1), 80-101 (Jan 2013). https:
//doi.org/10.1007/s00145-011-9114-1

Groot Bruinderink, L., Hiilsing, A., Lange, T., Yarom, Y.: Flush, gauss, and reload—
a cache attack on the bliss lattice-based signature scheme. In: International Confer-
ence on Cryptographic Hardware and Embedded Systems. pp. 323-345. Springer
(2016)

Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Pro-
ceedings of the twenty-eighth annual ACM symposium on Theory of computing.
pp. 212-219 (1996)

Guo, Q., Johansson, T., Stankovski, P.: Coded-bkw: Solving lwe using lattice codes.
In: Annual Cryptology Conference. pp. 23-42. Springer (2015)

Halevi, S., Shoup, V.: Bootstrapping for HElib. In: Oswald, E., Fischlin, M. (eds.)
EUROCRYPT 2015, Part I. LNCS, vol. 9056, pp. 641-670. Springer, Heidelberg
(Apr 2015). https://doi.org/10.1007/978-3-662-46800-5_25

Hanrot, G., Pujol, X., Stehlé, D.: Algorithms for the shortest and closest lattice
vector problems. In: Chee, Y.M., Guo, Z., Ling, S., Shao, F., Tang, Y., Wang, H.,
Xing, C. (eds.) Coding and Cryptology. pp. 159-190. Springer Berlin Heidelberg,
Berlin, Heidelberg (2011)

Hofheinz, D., Hovelmanns, K., Kiltz, E.: A modular analysis of the Fujisaki-
Okamoto transformation. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017, Part I. LNCS,
vol. 10677, pp. 341-371. Springer, Heidelberg (Nov 2017). https://doi.org/10.1
007/978-3-319-70500-2_12

33

https://doi.org/10.1007/978-3-319-89339-6_16
https://doi.org/10.1007/978-3-319-89339-6_16
https://doi.org/10.13154/tches.v2018.i1.238-268
https://tches.iacr.org/index.php/TCHES/article/view/839
https://doi.org/10.1007/978-3-030-65277-7_20
https://doi.org/10.1007/3-540-48405-1_34
https://doi.org/10.1007/s00145-011-9114-1
https://doi.org/10.1007/s00145-011-9114-1
https://doi.org/10.1007/978-3-662-46800-5_25
https://doi.org/10.1007/978-3-319-70500-2_12
https://doi.org/10.1007/978-3-319-70500-2_12

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

Hovelmanns, K., Kiltz, E., Schéige, S., Unruh, D.: Generic authenticated key ex-
change in the quantum random oracle model. In: Kiayias, A., Kohlweiss, M.,
Wallden, P., Zikas, V. (eds.) PKC 2020, Part II. LNCS, vol. 12111, pp. 389-422.
Springer, Heidelberg (May 2020). https://doi.org/10.1007/978-3-030-45388
-6_14

Howgrave-Graham, N., Nguyen, P.Q., Pointcheval, D., Proos, J., Silverman, J.H.,
Singer, A., Whyte, W.: The impact of decryption failures on the security of ntru
encryption. In: Boneh, D. (ed.) Advances in Cryptology - CRYPTO 2003. pp.
226-246. Springer Berlin Heidelberg, Berlin, Heidelberg (2003)

Jiang, H., Zhang, Z., Chen, L., Wang, H., Ma, Z.: Ind-cca-secure key encapsu-
lation mechanism in the quantum random oracle model, revisited. In: Shacham,
H., Boldyreva, A. (eds.) Advances in Cryptology — CRYPTO 2018. pp. 96-125.
Springer International Publishing, Cham (2018)

Krausz, M., Land, G., Richter-Brockmann, J., Giineysu, T.: A holistic approach
towards side-channel secure fixed-weight polynomial sampling. In: Public-Key
Cryptography—PKC 2023: 26th IACR International Conference on Practice and
Theory of Public-Key Cryptography, Atlanta, GA, USA, May 7-10, 2023, Pro-
ceedings, Part II. pp. 94-124. Springer (2023)

Langlois, A., Stehlé, D., Steinfeld, R.: GGHLite: More efficient multilinear maps
from ideal lattices. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS,
vol. 8441, pp. 239-256. Springer, Heidelberg (May 2014). https://doi.org/10.1
007/978-3-642-55220-5_14

Lee, J., Kim, D., Lee, H., Lee, Y., Cheon, J.H.: Rlizard: Post-quantum key encap-
sulation mechanism for iot devices. IEEE Access 7, 2080-2091 (2018)

MATZOV: Report on the Security of LWE: Improved Dual Lattice Attack (Apr
2022). https://doi.org/10.5281/zenodo . 6493704

May, A.: How to meet ternary LWE keys. In: Malkin, T., Peikert, C. (eds.)
CRYPTO 2021, Part II. LNCS, vol. 12826, pp. 701-731. Springer, Heidelberg,
Virtual Event (Aug 2021). https://doi.org/10.1007/978-3-030-84245-1_24
Mera, J.M.B., Karmakar, A., Kundu, S., Verbauwhede, I.: Scabbard: a suite of
efficient learning with rounding key-encapsulation mechanisms. IACR Transactions
on Cryptographic Hardware and Embedded Systems pp. 474-509 (2021)

Park, S., Jung, C.G., Park, A., Choi, J., Kang, H.: Tiger: Tiny bandwidth key
encapsulation mechanism for easy migration based on rlwe(r). Cryptology ePrint
Archive, Paper 2022/1651 (2022), https://eprint.iacr.org/2022/1651
Poppelmann, T., Giineysu, T.: Towards practical lattice-based public-key encryp-
tion on reconfigurable hardware. In: Selected Areas in Cryptography—SAC 2013:
20th International Conference, Burnaby, BC, Canada, August 14-16, 2013, Revised
Selected Papers 20. pp. 68-85. Springer (2014)

Saito, T., Xagawa, K., Yamakawa, T.: Tightly-secure key-encapsulation mecha-
nism in the quantum random oracle model. In: Nielsen, J.B., Rijmen, V. (eds.)
EUROCRYPT 2018, Part III. LNCS, vol. 10822, pp. 520-551. Springer, Heidel-
berg (Apr / May 2018). https://doi.org/10.1007/978-3-319-78372-7_17
Schnorr, C.P., Euchner, M.: Lattice basis reduction: Improved practical algorithms
and solving subset sum problems. Mathematical programming 66(1), 181-199
(1994)

Sendrier, N.: Secure sampling of constant-weight words — application to bike. Cryp-
tology ePrint Archive, Paper 2021/1631 (2021), https://eprint.iacr.org/2021
/1631

34

https://doi.org/10.1007/978-3-030-45388-6_14
https://doi.org/10.1007/978-3-030-45388-6_14
https://doi.org/10.1007/978-3-642-55220-5_14
https://doi.org/10.1007/978-3-642-55220-5_14
https://doi.org/10.5281/zenodo.6493704
https://doi.org/10.1007/978-3-030-84245-1_24
https://eprint.iacr.org/2022/1651
https://doi.org/10.1007/978-3-319-78372-7_17
https://eprint.iacr.org/2021/1631
https://eprint.iacr.org/2021/1631

57.

58.

59.

Sim, B.Y., Park, A., Han, D.G.: Chosen-ciphertext clustering attack on crystals-
kyber using the side-channel leakage of barrett reduction. IEEE Internet of Things
Journal 9(21), 21382-21397 (2022). https://doi.org/10.1109/JI0T.2022.3179
683

Son, Y., Cheon, J.H.: Revisiting the hybrid attack on sparse secret lwe and ap-
plication to he parameters. In: Proceedings of the 7th ACM Workshop on En-
crypted Computing & Applied Homomorphic Cryptography. p. 11-20. WAHC’19,
Association for Computing Machinery, New York, NY, USA (2019). https:
//doi.org/10.1145/3338469.3358941

Vercauteren, I.F., Sinha Roy, S., D’Anvers, J.P., Karmakar, A.: Saber: Mod-lwr
based kem, nIST PQC Round 3 Submision

35

https://doi.org/10.1109/JIOT.2022.3179683
https://doi.org/10.1109/JIOT.2022.3179683
https://doi.org/10.1145/3338469.3358941
https://doi.org/10.1145/3338469.3358941

	SMAUG-T: the Key Exchange Algorithm based on Module-LWE and Module-LWR

