
SMAUG-T: the Key Exchange Algorithm based on
Module-LWE and Module-LWR

Jung Hee Cheon1,2†, Hyeongmin Choe1, Joongeun Choi3, Dongyeon Hong4,
Jeongdae Hong5, Chi-Gon Jung3, Honggoo Kang3, Janghyun Lee3, Seonghyuck
Lim3, Aesun Park3, Seunghwan Park3†, Jungjoo Seo2, Hyoeun Seong2, and

Junbum Shin2

1 Seoul National University {jhcheon, sixtail528}@snu.ac.kr
2 CryptoLab Inc. {inkme, she000, junbum.shin}@cryptolab.co.kr

3 Defense Counter-intelligence Command
{joongeuntom, wjdclrhs, honggoonin, jhlee, 794613sh, aesunpark18,

horriblepaper}@gmail.com
4 Samsung Electronics jjoker041@gmail.com

5 Ministry of National Defense ghjd2000@gmail.com

Version 4.0
(October 4, 2024)

Abstract. This paper introduces SMAUG-T, a lattice-based post-quan-
tum key exchange algorithm submitted to Round 2 of the Korean Post-
Quantum Cryptography Competition (KpqC). SMAUG-T is designed by
merging SMAUG and TiGER from the KpqC Round 1. The algorithm is
based on the hardness of the MLWE and MLWR problems defined in the
module lattice and using sparse secret chosen by SMAUG. Along with the
original SMAUG parameter sets, we introduce a TiMER (Tiny SMAUG
using Error Reconciliation) parameter set suitable for the IoT environ-
ment. In terms of size, SMAUG-T achieves ciphertext and public key that
is up to 14% and 19% smaller than Kyber, respectively. From a perfor-
mance perspective, encapsulation demonstrates high efficiency, achieving
up to 60% faster than Kyber in the constant-time C implementation and
up to 70% in the AVX2 implementation.

Keywords: Lattice-based Cryptography · Post-Quantum Cryptogra-
phy · Key Encapsulation Mechanism · Module Learning With Errors
· Module Learning With Roundings.

This work is submitted to ‘Korean Post-Quantum Cryptography Competition’ (ww
w.kpqc.or.kr).
†: Principal submitters.

www.kpqc.or.kr
www.kpqc.or.kr


Changelog

October 4, 2024 (version 4.0) In SMAUG-T v4.0, there are some changes in
its design and parameters to make the implementation constant time (which had
some issues in its previous version) while maintaining the performance. We now
avoid using the fixed-weight sampler (HWT) during Encap and Decap. Instead,
we changed the distribution of the ephemeral randomness to a non-fixed-weight
but sparse ternary vector. This can be viewed as a narrower version of the
Centered Binomial Distribution. The parameters are changed accordingly, e.g.,
the secret key with larger Hamming weights and ephemeral randomness with
new sparse distributions. This leads to smaller sizes and smaller DFPs while
maintaining security against the recently reported attacks.

The polynomial multiplication is also modified to use the coefficient represen-
tation of the secret key instead of using their index to avoid the side-channel at-
tacks and to utilize super-fast AVX optimizations on NTT. We use NTT/Toom-
Cook (like Saber).

February 23, 2024 (version 3.0) The two schemes SMAUG and TiGER are
merged to SMAUG-T, taking the advantageous features from both schemes.
Along with the three SMAUG parameter sets (renamed as SMAUG-T128, 192,
256), a new parameter set TiMER is added, which allows a much lower decryption
failure probability, thanks to the error reconciliation from D2 encoding.

A countermeasure was included for the side channel analysis as some vul-
nerabilities were reported in the KpqC round 1. Hamming weight sampling has
been changed and applied to the default, and dGaussian sampling with hiding is
provided as an additional implementation.

An optimized implementation with AVX vectorization is also provided, which
reports 1.7-1.8x speed-ups. For a fair comparison to other KpqC candidates that
provide implementations using so-called 90s symmetric primitives, we also pro-
vide an optimized implementation using the 90s, which reports 2.5-3.0x speed-
ups compared to the reference implementation.

October 30, 2023 (version 2.0) First, we updated the hamming weight sam-
pler HWT, which was not running at a constant time due to the dependency
on the number of hash calls. The new hamming weight sampler is a hybrid of
the previous HWT algorithm, which was adopted from SampleInBall algorithm in
Dilthium, and the constant weight word sampler [61]. We verified that the new
sampler runs at a constant time with a fixed number of hash calls. With the
new hamming weight sampler and the partly optimized reference code, SMAUG
is now 17% faster than the previous version.

Second, we give an additional security analysis for the choice of the approx-
imate discrete Gaussian sampler. Using the Rényi divergence, it is theoretically
guaranteed that the security loss comes from the approximation is minute.

Lastly, we give an additional justification for the decryption failure proba-
bility against the state-of-the-art decryption failure attacks, asserting that the

2



current failure probability of SMAUG is already low enough due to the attack
scenarios.

May 23, 2023 (version 1.0) First, we updated the Python script for DFP com-
putation as it was computing the decryption failure probability (DFP) wrongly.
Note that the script was missing in the submission file, but included in our web-
site. The parameter sets for NIST’s security levels 3 and 5 had higher DFPs than
they were reported in the KpqC round 1 submission. As a result, the parameter
sets are updated.

Second, we additionally compress the ciphertexts. As compression makes the
error larger, we exploit the balance between the sizes and DFP.

Third, we put additional cost estimations on some algebraic and topological
attacks: Arora-Ge [7], Coded-BKW [43], and Meet-LWE [57] attacks. We note
that the previous parameter sets were all in a secure region against these attacks;
however, for the new parameter sets, we aim to have more security margins. We
put our code for estimating the cost of the Meet-LWE attack in the Python
script.

Based on the above three updates, we changed our recommended parameter
sets. As q = 1024 is not available anymore for sufficient DFPs in the security
levels 3 and 5, we move to q = 2048 for those levels, resulting in slightly larger
public key and secret key sizes. The ciphertext sizes are decreased by at most
96 bytes.

We also update the reference implementation to have a constant running
time with much faster speed. It is uploaded to our website: kpqc.cryptolab.c
o.kr/smaug-t.

1 Introduction

SMAUG-T is an efficient post-quantum Key Encapsulation Mechanism (KEM)
whose security is based on the hardness of the lattice problems. SMAUG-T follows
the approaches using both Learning-With-Errors (LWE) and Learning-With-
Roundings (LWR) variants in recent constructions of post-quantum KEMs such
as Lizard [27] and RLizard [55]. Using the two lattice problems, SMAUG-T bases
its security on their module variant problems as in Kyber [16] or Saber [35]: the
public key does not leak the secret key information by the hardness of Modulue-
LWE (MLWE) problem, and the ciphertext protects sharing keys based on the
hardness of Modulue-LWR (MLWR) problem.

SMAUG-T consists of the underlying Public Key Encryption (PKE) scheme
SMAUG-T.PKE and the KEM scheme SMAUG-T.KEM. SMAUG-T.PKE has IN-
Distinguishability under Chosen Message Attack (IND-CPA), which can be con-
verted to SMAUG-T.KEM scheme with INDistinguishability under adaptive Cho-
sen Ciphertext Attack (IND-CCA2), through the Fujisaki-Okamoto (FO) trans-
form.

3

kpqc.cryptolab.co.kr/smaug-t
kpqc.cryptolab.co.kr/smaug-t


1.1 Design rationale

The design rationale of SMAUG-T aims is to achieve small ciphertext and pub-
lic key with low computational cost while maintaining security against various
attacks. In more detail, we target the following practicality and security require-
ments considering real applications:

Practicality:

• Both the public key and ciphertext, especially the latter, which is transmitted
more frequently, need to be short in order to minimize communication costs.

• As the key exchange protocol is frequently required on various personal de-
vices, a KEM algorithm with low computational costs is more feasible than
a high-cost one.

• A small secret key is desirable in restricted environments such as embedded
or IoT devices since managing the secure zone is crucial to prevent physical
attacks on secret key storage.

Security:

• Security should be concretely guaranteed concerning the attacks on the un-
derlying assumptions, say lattice attacks.

• The low enough Decryption Failure Probability (DFP) is essential to avoid
the attacks boosting the failure and exploiting the decryption failures [31,49].

• As KEMs are widely used in various devices and systems, countermeasures
against implementation-specific attacks should also be considered.

MLWE and MLWR. SMAUG-T is constructed on the hardness of MLWE and
MLWR problems and follow the key structure of Lizard [27] and Ring-Lizard
(RLizard) [55]. Since LWE problem has been a well-studied problem for the last
two decades, there are many LWE-based schemes (e.g., FrodoKEM [17]). Ring
and module LWE problems (RLWE and MLWE) are variants defined over struc-
tured lattices and regarded as hard as LWE. Many schemes base their security on
RLWE/MLWE (e.g., NewHope [4], Kyber [16] and Saber [35]) for efficiency rea-
sons. We chose the module structure, which enables us to fine-tune security and
efficiency in a much more scalable way, unlike standard and ring versions. Since
MLWR problem is regarded as hard as MLWE problem unless we overuse the
same secret to generate the samples [15], we chose to use MLWR samples for the
encryption. By basing the MLWR, we reduce the ciphertext size by log q/ log p
than MLWE instances so that more efficient encryption and decryption are pos-
sible.

Quantum Fujisaki-Okamoto transform. SMAUG-T consists of key encapsu-
lation mechanisms SMAUG-T.KEM, and public key encryption schemes SMAUG-
T.PKE. On top of the PKE schemes, we construct the KEM schemes using the
FO transform [40,41]. Line of works on FO transforms in the quantum random

4



oracle model [14, 47, 50, 59] make it possible to analyze the quantum security,
i.e., in the Quantum Random Oracle Model (QROM). In particular, we use
the FO transform with implicit rejection and no ciphertext contributions (FO ̸⊥

m)
following [48].

Sparse secret key and ephemeral secret. We design the key generation
algorithm based on MLWE problem using sparse secret. We use sparse ternary
polynomials for the secret key and the ephemeral polynomial vectors based on
the hardness reduction on the LWE problem using sparse secret [26]. We take
advantage of the sparsity, e.g., significantly smaller secret keys. In particular,
the small secret makes SMAUG-T more feasible in IoT devices having restricted
resources. Specifically, we choose to use a fixed Hamming weight for the secret
keys and a non-fixed Hamming weight for the ephemeral secret, a sparse version
of the Centered Binomial Distribution (CBD), for secure implementation.

Choice of moduli. All our parameter sets use powers of two moduli. This
choice makes SMAUG-T enjoy faster encapsulation using simple bit shiftings,
easy uniform samplings, and scalings. The power-of-two moduli makes it hard
to apply the Number Theoretic Transform (NTT) on the polynomial multipli-
cations. However, by embedding the power-of-two arithmetic into a larger NTT
prime arithmetic, SMAUG-T achieves fast speeds.

Negligible decapsulation failures. Since we base the security on the lattice
problems, noise is inherent. Thus decryption result of a SMAUG-T.PKE cipher-
text could be different from the original message. We balance the sizes, DFP,
and security of SMAUG-T by fine-tuning the parameters while maintaining the
DFP to be negligible. In addition, additional parameter set TiMER uses the D2
encoding and error reconciliation as in NewHope [4, 58], to further decrease the
DFP and the sizes.

SMAUG-T. We give estimated security and sizes for SMAUG-T parameter sets
in Table 1, where the complete version of it can be found in Section 5.2. The
sizes are given in bytes, and DFP is given logarithm base two.

The security estimator, the reference codes, and the optimized implementa-
tions are available on our website: www.kpqc.cryptolab.co.kr/smaug-t.

1.2 Advantages and limitations

Advantages. The security of SMAUG-T relies on the hardness of the lattice
problems MLWE and MLWR, which enable balancing between security and ef-
ficiency. In terms of sizes, SMAUG-T has smaller ciphertext sizes compared to
Kyber or Saber, which is the smallest ciphertext size among the recent practi-
cal lattice-based KEMs. In terms of DFP, SMAUG-T achieves low enough DFP,
which is less than or similar to that of Saber. SMAUG-T parameter sets do not

5

www.kpqc.cryptolab.co.kr/smaug-t


Parameters sets TiMER SMAUG-T128 SMAUG-T192 SMAUG-T256

Target security 1 1 3 5

(n, k) (256, 2) (256, 2) (256, 3) (256, 4)

q 1024 1024 2048 2048

(p, p′) (256, 8) (256, 32) (512, 16) (512, 128)

Classical core-SVP hardness 119.7 119.7 180.2 250.1

Quantum core-SVP hardness 105.4 105.4 158.6 221.0

Decryption failure probability -161.0 -118.3 -179.2 -194.2

Secret key size 832(160) 832(160) 1312(224) 1792(352)

Public key 672 672 1088 1440

Ciphertext 608 672 992 1376

Table 1: Security and sizes for our parameter sets.

use Error Correction Code (ECC) to avoid possible side-channel attacks, except
for the TiMER parameter set. TiMER benefits from the single-bit error correcting
D2 encoding, which is masking-friendly from its constructions. Implementation-
wise, encapsulation and decapsulation of SMAUG-T can be done efficiently using
NTT. Each sub-procedure are masking friendly, against the physical attacks. We
give the constant-time C reference code and AVX optimization, which validates
the completeness and efficiency of SMAUG-T.

Limitations. We use MLWR problem, which has been studied shorter than
MLWE or LWE problems; however, it has a security reduction to MLWE. MLWE
problem with a sparse secret has a similar issue but has been studied much longer
and is used in various applications, e.g., homomorphic encryptions. As we use
MLWE problem for the secret key security, larger public key sizes than Saber
are inherent. It can be seen as a trade-off between the public key size versus
performance with a smaller secret key size.

2 Preliminaries

2.1 Notation

We denote matrices with bold and upper case letters (e.g., A) and vectors with
bold type and lower case letters (e.g., b). Unless otherwise stated, the vector is
a column vector.

We define a polynomial ring R = Z[x]/(xn + 1) where n is a power of 2
integers and denote a quotient ring by Rq = Z[x]/(q, xn + 1) = Zq[x]/(x

n + 1)
for a positive integer q.

For an integer η, we denote the set of polynomials of degree less than n with
coefficients in [−η, η]∩Z as Sη. Let S̃η be a set of polynomials of degree less than
n with coefficients in [−η, η)∩Z. We denote a uniform distribution over a discrete

6



set C as U(C). We denote a zero-centered discrete Gaussian distribution with
standard deviation σ as DZ,σ. We define Rényi divergence of order α between
two probability distributions P and Q such that Supp(P ) ⊆ Supp(Q) as

Rα(P∥Q) =

 ∑
x∈Supp(P )

P (x)α

Q(x)α−1

1/(α−1)

,

where Supp(D) for a distribution D is defined as Supp(D) = {x ∈ D : D(x) ̸=
0}. We denote a binomial distribution with a parameter n and a probability p as
B(n, p). We denote the Centered Binomial Distribution (CBD) with a parameter
d as CBDd, where the samples range from −d to d.

2.2 Lattice assumptions

We define some well-known lattice assumptions MLWE and MLWR on the struc-
tured Euclidean lattices.

Definition 1 (Decision-MLWEn,q,k,ℓ,η). For positive integers q, k, ℓ, η and
the dimension n of R, we say that the advantage of an adversary A solving
the decision-MLWEn,q,k,ℓ,η problem is

AdvMLWE
n,q,k,ℓ,η(A) =

∣∣Pr [b = 1 | A← Rk×ℓ
q ;b← Rk

q ; b← A(A,b)
]

− Pr
[
b = 1 | A← Rk×ℓ

q ; (s, e)← Sℓ
η × Sk

η ; b← A(A,A · s+ e)
] ∣∣

Definition 2 (Decision-MLWRn,p,q,k,ℓ,η). For positive integers p, q, k, ℓ, η with
q ≥ p ≥ 2 and the dimension n of R, we say that the advantage of an adversary
A solving the decision-MLWRn,p,q,k,ℓ,η problem is

AdvMLWR
n,p,q,k,ℓ,η(A) =

∣∣Pr [b = 1 | A← Rk×ℓ
p ;b← Rk

q ; b← A(A,b)
]

− Pr
[
b = 1 | A← Rk×ℓ

q ; s← Sℓ
η; b← A(A, ⌊p/q ·A · s⌉)

] ∣∣
2.3 Public key encryption and key encapsulation mechanism

We recap the formalisms of PKE and KEM.

Definition 3 (PKE). A public key encryption scheme is a tuple of PPT algo-
rithms PKE = (KeyGen,Enc,Dec) with the following specifications:

• KeyGen: a probabilistic algorithm that outputs a public key pk and a secret
key sk;

• Enc: a probabilistic algorithm that takes as input a public key pk and a mes-
sage µ and outputs a ciphertext ct;

• Dec: a deterministic algorithm that takes as input a secret key sk and a
ciphertext ct and outputs a message µ.

7



Let 0 < δ < 1. We say that it is (1− δ)-correct if for any (pk, sk) generated from
KeyGen and µ,

Pr[Dec(sk,Enc(pk, µ)) ̸= µ] ≤ δ,

where the probability is taken over the randomness of the encryption algorithm.
We call the above probability decryption failure probability (DFP). In addition,
we say that it is correct in the (Q)ROM if the probability is taken over the ran-
domness of the (quantum) random oracle, modeling the hash function.

Definition 4 (KEM). A key encapsulation mechanism scheme is a tuple of
PPT algorithms KEM = (KeyGen,Encap,Decap) with the following specifications:

• KeyGen: a probabilistic algorithm that outputs a public key pk and a secret
key sk;

• Encap: a probabilistic algorithm that takes as input a public key pk and out-
puts a sharing key K and a ciphertext ct;

• Decap: a deterministic algorithm that takes input a secret key sk and a ci-
phertext ct and outputs a sharing key K.

The correctness of KEM is defined similarly to that of PKE.

We give the advantage function for a IND-CPA attacker against PKE.

Definition 5 (IND-CPA security of PKE). For a (quantum) adversary A
against a public key encryption scheme PKE = (KeyGen,Enc, Dec), we define
the IND-CPA advantage of A = (A1,A2) as follows:

AdvIND-CPA
PKE (A) =

∣∣∣∣ Pr
(pk,sk)

[
b = b′

∣∣∣∣ (µ0, µ1, st)← A1(pk); b← {0, 1};
ct← Enc(pk, µb); b′ ← A2(pk, ct, st)

]
− 1

2

∣∣∣∣ .
The probability is taken over the randomness of A and (pk, sk)← KeyGen(1λ).

We then define two advantage functions for IND-CPA and IND-CCA2 attack-
ers.

Definition 6 (IND-CPA and IND-CCA security of KEM). For a (quan-
tum) adversary A against a key encapsulation mechanism KEM = (KeyGen,Encap,
Decap), we define the IND-CPA advantage of A as follows:

AdvIND-CPA
KEM (A) =

∣∣∣∣ Pr
(pk,sk)

[
b = b′

∣∣∣∣ b← {0, 1}; (K0, ct)← Encap(pk);
K1 ← K; b′ ← A(pk, ct,Kb)

]
− 1

2

∣∣∣∣ .
The probability is taken over the randomness of A and (pk, sk) ← KeyGen(1λ).
The IND-CCA advantage of A is defined similarly except that the adversary can
query Decap(sk, ·) oracle on any ciphertext ct′(̸= ct).

We can then define the (quantum) security notions of PKE and KEM in the
(Q)ROM as follows.

8



Definition 7 ((Q)ROM security of PKE and KEM). For T, ϵ > 0, we
say that a scheme S ∈ {PKE,KEM} is (T, ϵ)-ATK secure in the (Q)ROM if for
any (quantum) adversary A with runtime ≤ T given classical access to O and
(quantum) access to a random oracle H, it holds that AdvATKS (A) < ϵ, where

O =

Enc if S = PKE and ATK ∈ {OW-CPA, IND-CPA},
Encap if S = KEM and ATK = IND-CPA,
Encap,Decap(sk, ·) if S = KEM and ATK = IND-CCA.

2.4 Fujisaki-Okamoto transform

Fujiskai and Okamoto proposed a novel generic transform [40, 41] that turns a
weakly secure PKE scheme into a strongly secure PKE scheme in the Random
Oracle Model (ROM), and various variants have been proposed to deal with
tightness, non-correct PKEs, and in the quantum setting, i.e., QROM. Here, we
recall the FO transformation for KEM as introduced by Dent [33] and revisited
by Hofheinz et al. [47], Bindel et al. [13], and Hövelmanns et al. [48].

The original FO transforms FO⊥
m constructs a KEM from a deterministic

PKE, i.e., a de-randomized version. The encapsulation randomly samples a mes-
sage m and uses the message’s hash value G(m) as randomness for encryption,
generating a ciphertext. The sharing key K = H(m) is generated by hashing
(with different hash functions) the message. In the decapsulation, it first de-
crypts the ciphertext and recovers the message, m′. If it fails to decrypt, it
outputs ⊥. If the “re-encryption” of the recovered message is not equal to the
received ciphertext, it also outputs ⊥. The sharing key can be generated by
hashing the recovered message.

In the quantum setting, however, the FO transform with “implicit rejection”
(FO ̸⊥

m) has a tighter security proof than the original version, which implicitly
outputs a pseudo-random sharing key if the re-encryption fails. We recap the
QROM proof of Bindel et al. [13] allowing the KEMs constructed over non-
perfect PKEs to have IND-CCA security.

Theorem 1 ([13], Theorem 1 & 2). Let G and H be quantum-accessible
random oracles, and the deterministic PKE is ϵ-injective. Then the advantage
of IND-CCA attacker A with at most QDec decryption queries and QG and QH

hash queries at depth at most dG and dH , respectively, is

AdvIND-CCA
KEM (A) ≤ 2

√
(dG + 2)

(
AdvIND-CPA

PKE (B1) + 8(QG + 1)/|M|
)

+AdvDF
PKE(B2) + 4

√
dHQH/|M|+ ϵ,

where B1 is an IND-CPA adversary on PKE and B2 is an adversary against
finding a decryption failing ciphertext, returning at most QDec ciphertexts.

3 Design choices

In this section, we explain the design choices for SMAUG-T.

9



3.1 MLWE public key and MLWR ciphertext

One of the core designs of SMAUG-T uses the MLWE hardness for its secret key
security and MLWR hardness for its message security. This choice is adapted
from Lizard and RLizard, which use LWE/LWR and RLWE/RLWR, respec-
tively. Using both LWE and LWR variant problems makes the conceptual secu-
rity distinction between the secret key and the ephemeral sharing key: a more
conservative secret key with more efficient en/decapsulations. This can be viewed
as a trade-off between “conservative” and “efficient” designs. Combined with the
sparse secret, bringing the LWE-based key generation to the LWR-based scheme
enables balancing the speed and the DFP.

3.1.1 Public key. Public key of SMAUG-T consists of a vector b over a
polynomial ring Rq and a matrix A, which can be viewed as an MLWE sample,

(A,b = −A⊤s+ e) ∈ Rk×k
q ×Rk

q ,

where s is a ternary secret polynomial with hamming weight hs, and e is an error
sampled from discrete Gaussian distribution with standard deviation σ. We now
specify the uniform matrix sampling algorithm for A ∈ Rk×k

q in Figure 1. It is
adapted from the pseudorandom generator gen in Saber [32].

expandA(seed): ▷ seed ∈ {0, 1}256

1: buf← XOF(seed)
2: for i from 0 to k − 1 do
3: A[i] = bytes to Rq(buf+ polybytes · i) ▷ Convert to ring elements

4: return A

Fig. 1: Uniform random matrix sampler, expandA.

We note that the public key of SMAUG-T consists of b and the seed of A.

3.1.2 Ciphertext. The ciphertext of SMAUG-T is a tuple of a vector c1 ∈ Rk
p

and a polynomial c2 ∈ Rp′ . The ciphertext is generated by multiplying a random
vector r to the public key; then it is scaled and rounded as,

c =

[
c1
c2

]
=

⌊
p

q
·
(

A
b⊤

)
· r
⌉
+

p

t
·
[
0
µ

]
,

Along with the public key, it can be treated as an MLWR sample added by a
scaled message as (A′, ⌊p/q ·A′ · r⌉)+(0, µ′), where A′ is a concatenated matrix
of A and b⊤.

The ciphertext can be further compressed by scaling the second component
c2 by p′/p, resulting in a shorter ciphertext but a larger error. We note that the

10



public key can be compressed with the same technique. However, it introduces
a more significant error, so we do not compress the public key in SMAUG-T.

We call the random vector r the ephemeral secret, which is a sparse ternary
vector. Note that the secret and the ephemeral secret are both sparse ternary
vectors; however, we sample them from different distributions using different
samplers.

3.2 Sparse secret

We use the sparse ternary distribution for the randomnesses, s and r. In the
following, we will discuss the advantages of the sparse secret and give the sam-
pling algorithm. Notably, we use two different sampling algorithms for the sparse
secrets: HWT, a fixed Hamming weight sampler for the secret key s, and spCBD,
a non-fixed Hamming weight sampler for ephemeral secret r, respectively.

3.2.1 Advantage of using sparse secret. The sparse secret is widely used
in homomorphic encryption to reduce the noise propagation during the homo-
morphic operations [19,25,44] and to speed up the computations. As the lattice-
based KEM schemes have inherent decryption error from LWE or LWR noise,
the sparse secret can lower this decryption error and improve the performance
of KEMs.

Concretely, the decryption error can be expressed as ⟨e, r⟩+⟨e1, s⟩+e2, where
s is a secret key, r is a randomness used for encryption, e← χk

pk is a noise added

in public key, and (e1, e2)← χk+1
ct is a noise added in ciphertext. As the vectors

r and s are ternary, each coefficient of the decryption error is a signed addition
of hr variables from χpk and hs + 1 variables from χct. The magnitude of the
decryption error depends greatly on the Hamming weights hr and hs; thus, we
can take advantage of the sparse secrets.

On the other hand, as the sparse secret reduces the secret key entropy, the
hardness of the lattice problem may be decreased. For the security of LWE
problem using sparse secret, a series of works have been done, including [26]
for asymptotic security based on the reductions to worst-case lattice problems,
and [12, 37, 63] for concrete security. Independent of the secret distribution, the
module variant (MLWE) is regarded as hard as LWE problem with appropriate
parameters, including a smaller modulus. We also exploit the reductions from
ordinary MLWE to MLWE using sparse secret or small errors [20]. The MLWR
problem also has a simple reduction from MLWE independent of the secret
distribution, and its concrete security is heuristically discussed in [32].

Since SMAUG-T uses a sparse secret key s and a sparse randomness r, the se-
curity of SMAUG-T is based on the hardness of MLWE and MLWR problems us-
ing sparse secret. For the specific parameters, we exploit the lattice-estimator [1],
which covers most of the recent lattice attacks, and also consider some attacks
not included in the estimator. Using a smaller modulus, SMAUG-T can maintain
high security, as in Kyber or Saber.

11



3.2.2 Hamming weight sampler Our Hamming weight sampler, HWTh, is
a shuffling-based algorithm that originated from [38], which has no bias on its
output and can be realized in a constant-time implementation. This algorithm
outperforms other constant-time samplers, such as the sorting-based one or the
bounded-rejection-based one. We first describe a subroutine of the shuffling-
based sampler in Figure 2, which generates unbiased random integers. An array
of integers si from an input seed array where sii is uniformly sampled from
integers [0, 1, ..., n− i] without bias.

REJ SAMPLE MOD(rand): ▷ rand is an array of 16-bit integers

1: j = n
2: t = t0, t1, ..., tn−1 = 0, 0, ..., 0
3: for i from 0 to n− 1 do
4: w = 2L mod (n− i)
5: m = randi · (n− i)
6: l = m mod 2L

7: while l < w do
8: m = randj · (n− i), j = j + 1
9: l = m
10: ti = m≫ L

11: return t

Fig. 2: Algorithm for generating unbiased uniformly random integers

HWTh(seed):

1: v = v0, v1, ..., vn−1 = 0, 0, ..., 0
2: buf, sign= PRF(seed)
3: si = REJ SAMPLE MOD(buf)
4: c0 = n− h
5: for i from 0 to n− 1 do ▷ Binary fixed-weight sampling
6: t = (sii − c0)≫ 15
7: c0 = c0 + t0, vi = 1 + t

8: for i from 0 to n− 1 do ▷ Transform to ternary
9: vi = (−vi) ∧ ((signi ∧ 0x02)− 1)

10: return v

Fig. 3: Ternary fixed Hamming weight sampling by shuffling

Then, we introduce the Hamming weight sampler algorithm in Figure 3,
which performs a ternary fixed-weight sampling by shuffling, which is slightly
modified from [38]. This process generates binary fixed-weight as stated in lines
5 to 11, then transforms to ternary representation using the random bits in sign
generated in line 3.

12



3.2.3 Sparse CBD sampler. Inspired by the efficient CBD sampler from
New Hope [4] (and many other KEM schemes) and the approximate discrete
Gaussian sampler from SMAUG [24], we introduce a boolean-based efficient
sparse ternary sampler, which we call sparse CBD sampler (spCBD).

The spCBD sampler takes input a probability r < 1/2 and outputs a signed
bit from {−1, 0, 1} with a probability mass function f : {−1, 0, 1} → [0, 1] given
as

f(−1) = f(1) = r, f(0) = 1− 2r .

This can be naturally extended to a vector of signed bits, where each coordinate
follows the same distribution. The resulting vector is a sparse ternary vector.
However, as each coordinate is probabilistically sampled, the vector’s Hamming
weight is not a fixed value. The Hamming follows the binomial distribution as

h ∼ B(n, 2r) ,

where h is the Hamming weight and n is the length of the vector.
We remark that, especially when the denominator of the probability r is a

power-of-two integer, say 2k, the spCBD sampler can be efficiently instantiated
by sampling k + 1 random bits and applying only the boolean operations. We
present two spCBD samplers we will use, which randomly sample from the spCBD
distribution with the probability parameter r = 1/8 and r = 3/16 in Figures 4.

spCBD1/8:

1: a, b, c← {0, 1}
2: t← a ∧ b
3: sign← ((c≪ 1) ∧ 0x02)− 1
4: return t · sign ▷ Distribution: {−1: 1/8, 0: 3/4, 1: 1/8}

spCBD3/16:

1: a, b, c, d← {0, 1}
2: t← a ∧ b ∨ c
3: sign← ((d≪ 1) ∧ 0x02)− 1
4: return t · sign ▷ Distribution: {−1: 3/16, 0: 5/8, 1: 3/16}

Fig. 4: Sparse CBD sampler for r = 1/8 and 3/16.

We further note that the distribution spCBD1/4 is equal to CBD with a
parameter d = 1, i.e., CBD1, which outputs a ternary secret.

3.3 Discrete Gaussian noise

3.3.1 Using approximate discrete Gaussian noise. Our design choice
for the noise distribution in MLWE follows the conventional discrete Gaus-
sian distribution, but with approximated CDTs following the approaches in

13



FrodoKEM [17]. As a result, we use a discrete Gaussian noise for the public
key generation, which is approximated to a narrow distribution. As this approx-
imated discrete Gaussian noise is used only for the public key, we can efficiently
bound the security loss from above. Considering the narrow discrete Gaussian
noise, we give a theoretical justification based on Rényi divergence to guarantee
the security of SMAUG-T.

In SMAUG-T, the narrow discrete Gaussian noise is used only for the public
key generation. So, the difference in the noise distribution only affects the dis-
tinguishing advantage between the games G2 and G3 in the proof of Theorem 4.
Then, the bound for the distinguishing advantage can also be expressed as(

AdvMLWE
n,q,k,k,DZ,σ

(B2) ·Rα(dGaussianσ∥DZ,σ)
nk
)1−1/α

,

assuming the pseudorandomness of dGaussianσ. This is due to Lemma 5.5 in [3].
We note that the key generation calls dGaussian only nk times and that the
public key is generated only once.

The advantage bound for SMAUG-T parameter set (see Section 5.2) can be
computed directly using the given formula; for TiMER parameter set (Resp.
SMAUG-T128, 192, and 256), the advantage increases by 1.09 (Resp. 1.09, 1.64,
and 2.20) bits with α = 500. Opposed to the estimated security based on the
bound AdvMLWE

n,q,k,k,dGaussianσ (B2) given in Section 5.2, this new bound provides a
more conservative security preventing some possible future attacks that target
the noise distribution.

This modification will slightly decrease only the speed of key generation by
less than 1.1x.

We also note that the narrow Gaussian noise is already considered when
estimating the concrete security (given in Section 5.2) using the explained es-
timators. The analysis here provides a more conservative security, preventing
possible future attacks that target the noise distribution. We also note that in
the core-SVP methodology, we only focus on the estimated attack cost of the
underlying MLWE and MLWR problems, not based on the security reductions
(as done in most of the NIST-submitted schemes) for a fair comparison to Kyber.

3.3.2 dGaussian sampler We construct dGaussian, a constant-time approx-
imate discrete Gaussian noise sampler, upon a Cumulative Distribution Table
(CDT) but is not used during sampling, as it is expressed with bit operations.

We first scale the discrete Gaussian distribution and make a CDT approx-
imating the discrete Gaussian distribution. We choose an appropriate scaling
factor based on the analysis in [17, 53] using Rényi divergence. We then deploy
the Quine-McCluskey method6 and apply logic minimization technique on the
CDT. As a result, even though our dGaussian is constructed upon CDT, it is
expressed with bit operations and is constant-time.

6 We use the python package, from https://github.com/dreylago/logicmin.

14

https://github.com/dreylago/logicmin


We describe dGaussian algorithm with σ = 1.0625 in Figure 5. The algorithm
is easily parallelizable and suitable for IoT devices as their memory requirement
is low.

dGaussian1.0625(x):

Require: x = x0x1x2x3x4x5x6x7x8x9 ∈ {0, 1}10
1: s = s1s0 = 00 ∈ {0, 1}2
2: s0 = x0x1x2x3x4x5x7x8

3: s0 += (x0x3x4x5x6x8) + (x1x3x4x5x6x8) + (x2x3x4x5x6x8)
4: s0 += (x2x3x6x8) + (x1x3x6x8)
5: s0 += (x6x7x8) + (x5x6x8) + (x4x6x8) + (x7x8)
6: s1 = (x1x2x4x5x7x8) + (x3x4x5x7x8) + (x6x7x8)
7: s = (−1)x9 · s ▷ · is the arithmetic multiplication
8: return s

Fig. 5: Discrete Gaussian sampler with σ = 1.0625, dGaussianσ.

3.4 Polynomial Multiplication

Despite the sparsity of the secret keys in SMAUG-T, a naive approach to take
advantage of the sparsity may expose the scheme to a side-channel attack that
exploits the time-variant of executions for polynomial multiplication. Well-known
multiplication algorithms that can be implemented with constant-time are NTT
and Toom-Cook multiplication.

The moduli of SMAUG-T are all power-of-two integers to efficiently han-
dle rounding by bit shifting and result in non-biased rounding error. To adopt
NTT for multiplications in SMAUG-T, the polynomial should be transformed to
NTT-friendly ring by switching the modulus. Conversely, the Toom-Cook multi-
plication is well-suited for handling arbitrary polynomial rings, as its foundation
lies in a divide-and-conquer strategy that reduces the problem into smaller sub-
problems. This approach ultimately relies on classical polynomial multiplication
techniques (i.e., schoolbook multiplication) for base cases of sufficiently small
size. These multiplications are commonly used in lattice-based PQC schemes,
and the performance of these two algorithms varies depending on the degree of
the polynomials, the algorithm’s parameters, and the operating hardware archi-
tecture.

Toom-Cook and Karatsuba. The Toom-Cook [29,64] and the Karatsuba [51]
multiplications are efficient algorithms for large integers that split operands and
perform multiplications and additions on smaller parts, resulting in lower time
complexity. Both achieve sub-quadratic time complexity O(n1+e) in the bit-
length n where 0 < e < 1, and can be utilized for the multiplications of polyno-
mials of large degrees.

15



The Karatsuba multiplication for computing c(x) = a(x)b(x) divides each of
degree n polynomials a(X) and b(x) into two sub-polynomials of degree n

2 . For
instance, a(x) is split into a(x) = a0(x) + a1(x)x

n
2 , where a0(x) and a1(x) are

defined as

a0(x) = a0 + a1x+ a2x
2 + · · ·+ an

2 −1x
n
2 −1

a1(x) = an
2
+ an

2 +1x+ an
2 +2x

n
2 +2 + · · ·+ an−1x

n
2 −1.

The Karatsuba multiplication computes c(x) with three n
2 -degree multipli-

cations and some additions rather than 4 polynomial multiplications as follows:

c(x) = a0(x)b0(x)

+
((
a0(x) + a1(x)

) (
b0(x) + b1(x)

)
−
(
a0(x) + b0(x)

) (
a1(x) + b1(x)

))
xn/2

+ a1(x)b1(x)xn.

The nested polynomial multiplications can be handled by applying Karatsuba
multiplication recursively until the degree of input polynomials are sufficiently
small to be executed by the naive multiplication method yielding Θ(nlog2 3) time
complexity by the master theorem for divide-and-conquer recurrences.

Toom-Cook multiplication generalizes Karatsuba multiplication in a way that
it splits the degree-n polynomials into k sub-polynomials and handles degree-
n
k polynomials in an appropriate manner. It is also possible to compute the
multiplications of the sub-polynomials by Karatsuba multiplication. The time
complexity of k-way Toom-Cook multiplication is Θ(nlogk(2k−1)) by the master
theorem.

Due to its ability to efficiently handle multiplications on polynomial rings that
are not well-suited for NTT, several PQC algorithms, such as those in [36], [45],
adopt Toom-Cook multiplication. As in [11], a 256-degree polynomial in SMAUG-
T is split into k = 4 parts by Toom-Cook, requiring 7 multiplications of 64-
degree sub-polynomials. The sub-polynomials are further split by Karatsuba
with threshold degree 16. With this choice of k and the threshold degree for
Karatsuba, 256-degree polynomial multiplication requires 63 polynomial multi-
plications for degree 16.

Number Theoretic Transform. The NTT is a widely used method for ef-
ficient multiplication in lattice-based cryptography that uses polynomial rings
since its quasi-linear complexity O(n·logn). For two polynomials a(x), b(x) ∈ Rq

the product a(x) · b(x) can be computed as follows where NTT−1 denotes the
inverse of NTT and ◦ is an element-wise multiplication in Zq.

NTT−1(NTT(a(x)) ◦ NTT(b(x))).

However, NTT has a limitation that requires using an NTT-friendly ring.
Specifically, the parameter n should be a power-of-two integer, then the modulus

16



q must be a prime that is 1 modulo 2n to ensure that Zq contains primitive n-
th or 2n-th root of unity. Despite its efficiency advantages, some schemes are
unable to leverage the NTT due to their use of NTT-unfriendly rings, such as
those employing power-of-two modulus or a prime n. Notable examples of such
schemes include Saber, NTRU, and SMAUG-T.

On the other hand, it is still possible to use NTT for the polynomial arith-
metic in these schemes by embedding the modulus into the NTT prime ring. [28]
shows that this approach is more efficient for Saber and NTRU than Toom-Cook
in SIMD environments such as AVX2. An efficient AVX2 implementation us-
ing this approach is also feasible for SMAUG-T. For the modulus q such that
n ∤ (q − 1), we represent coefficients within the range [− q

2 ,
q
2 ). Considering that

the maximum value of multiplication result coefficient is n · q2/4, if we find an
NTT prime Q satisfying Q > n · q2/2 and n|(Q − 1), we can use NTT-based
multiplication in RQ and recover correct result in Rq. If Q becomes too large,
it may exceed the 16-bit data type typically used for coefficient. In such cases,
by using the Chinese Remainder Theorem (CRT), the product of multiple NTT
primes qi can be used as sufficiently large Q. For SMAUG-T, q0 = 7,681 and
q1 = 10,753 can be used as NTT primes.

3.5 FO transform, FO̸⊥
m

We construct SMAUG-T upon the FO transform with implicit rejection and with-
out ciphertext contribution to the sharing key generation, say FO ̸⊥

m. This choice
makes the encapsulation and decapsulation algorithm efficient since the sharing
key can be directly generated from a message. The public key is additionally
fed into the hash function with the message to avoid multi-target decryption
failure attacks. The IND-CCA security of the resulting KEM in the QROM is
well-studied in [13,47,48].

3.6 D2 encoding

An additional parameter, TiMER, uses D2 encoding. D2 is one of the recon-
ciliation techniques that reduces bandwidth requirements, which was used in
NewHope [4]. This technique lowers the decryption failure rate and reduces the
ciphertext size by changing the error bound. In Figure 6, we give the description
of D2.

To ensure robustness against errors, each bit of the 128-bit message µ ∈
{0, ..., 255}16 is encoded into 2 coefficients by D2Enc. The decoding function
D2Dec maps 2 coefficients back to the original key bit. For example, for n = 256,
take 2 coefficients (each in the range {0, ..., q − 1}), subtract q/2 from each of
them, accumulate their absolute values, and set the key bit to 0 if the sum is
larger than q/2 or to 1 otherwise.

17



D2Enc(µ ∈ {0, . . . , 255}16):
1: v←Rq

2: for i from 0 to 15 do
3: for j from 0 to 7 do
4: mask← ((µ[i]≫ j) & 1
5: υ8∗i+j+0 ← mask & (q/2)
6: υ8∗i+j+128 ← mask & (q/2)

7: return v ∈ Rq

D2Dec(v ∈ Rq):

1: µ← {0, . . . , 255}16
2: for i from 0 to 255 do
3: t← |(υi+0 mod q)− (q − 1)/2|
4: t← t+ |(υi+128 mod q)− (q − 1)/2|
5: t← t− q/2
6: t← t≫ 15
7: µ[i≫ 3]← µ[i≫ 3]|(t≪ (i & 7))

8: return µ ∈ {0, . . . , 255}16

Fig. 6: Description of D2 encoding

4 The SMAUG-T

4.1 Specification of SMAUG-T.PKE

We now describe the public key encryption scheme SMAUG-T.PKE in Figure 7
with the following building blocks:

• Pseudo random function PRF for generating seedA, seedsk, and seede,
• Uniform random matrix sampler expandA for deriving A from seedA,
• Discrete Gaussian sampler dGaussianσ for deriving a MLWE noise e with
standard deviation σ from seede,

• Hamming weight sampler HWTh for deriving a sparse ternary s with Ham-
ming weight h = hs from seedsk

• Sparse CBD sampler spCBDr for deriving a sparse ternary r with a proba-
bility parameter r from seedr

One of the four parameter sets of SMAUG-T, namely, TiMER, has slightly
different features compared to SMAUG-T128 parameter set:

• Reduced message space: from {0, 1}256 to {0, 1}128 for D2 encoding, i.e.,
µ← D2Enc(µ).

• After decryption, the message adjustment process changed from rounding to
D2Dec.

The rest of the parts, including the key generations, are done exactly the
same as the description in Figure 7.

We then prove the completeness of SMAUG-T.PKE.

18



KeyGen(1λ):

1: A←Rk×k
q

2: s← HWThs ∈ Sk
η

3: e← D̃σ ∈ Rk

4: b = −A⊤ · s+ e ∈ Rk
q

5: return pk = (A,b), sk = s

Enc(pk, µ): ▷ pk = (A,b), µ ∈ Rt

1: r← spCBDr ∈ Sk
η

2: c1 = ⌊p/q ·A · r⌉ ∈ Rk
p

3: c2 = ⌊p′/q · ⟨b, r⟩+ p′/t · µ⌉ ∈ Rp′

4: return ct = (c1, c2)

Dec(sk, c): ▷ sk = s, c = (c1, c2)

1: µ′ = ⌊t/p · ⟨c1, s⟩+ t/p′ · c2⌉ ∈ Rt

2: return µ′

Fig. 7: Description of SMAUG-T.PKE

Theorem 2 (Completeness of SMAUG-T.PKE). Let A, b, s, e, and r are
defined as in Figure 7. Let the moduli t, p, p′, and q satisfy t | p | q and t | p′ | q.
Let e1 ∈ Rk

Q and e2 ∈ RQ be the rounding errors introduced from the scal-

ings and roundings of A · r and bT · r. That is, e1 = q
p (⌊

p
q · A · r⌉ mod p) −

(A · r mod q) and e2 = q
p′ (⌊p

′

q · ⟨b, r⟩⌉ mod p′) − (⟨b, r⟩ mod q). Let δ =

Pr
[
∥⟨e, r⟩+ ⟨e1, s⟩+ e2∥∞ > q

2t

]
, where the probability is taken over the ran-

domness of the encryption. Then SMAUG-T.PKE in Figure 7 is (1− δ)-correct.
That is, for every message µ and every key-pair (pk, sk) returned by KeyGen(1λ),
the decryption fails with a probability less than δ.

Proof. By the definition of e1 and e2, it holds that c1 = p
q · (A · r+ e1) mod p

and c2 = p′

q · (⟨b, r⟩+ e2) +
p′

t · µ mod p′, where the coefficients of e1 and e2
are in Z∩ (− q

2p ,
q
2p ] and Z∩ (− q

2p′ ,
q
2p′ ], respectively. Thus, the decryption of the

ciphertext (c1, c2) can be written as⌊
t

p
· ⟨c1, s⟩+

t

p′
· c2

⌉
mod t =

⌊
t

q
(⟨A · r, s⟩+ ⟨e1, s⟩+ ⟨b, r⟩+ e2) + µ

⌉
mod t

=

⌊
t

q

(
⟨A⊤ · s+ b, r⟩+ ⟨e1, s⟩+ e2

)
+ µ

⌉
mod t

= µ+

⌊
t

q
(⟨e, r⟩+ ⟨e1, s⟩+ e2)

⌉
mod t.

This is equal to µ if and only if every coefficient of ⟨e, r⟩+ ⟨e1, s⟩+ e2 is in the
interval [− q

2t ,
q
2t ). It concludes the proof. ⊓⊔

Note, it can be trivially proven that the use of D2 encoding in TiMER param-
eter set does not change the completeness of SMAUG-T, since the D2 encoding

19



output can be seen as the message µ in the above proof. The only assumption
we require is the completeness of D2 encoding.

4.2 Specification of SMAUG-T.KEM

We introduce the key encapsulation mechanism SMAUG-T.KEM in Figure 8.
SMAUG-T.KEM is designed following the Fujisaki-Okamoto transform with im-
plicit rejection using the non-perfectly correct public key encryption SMAUG-
T.PKE. The construction of SMAUG-T.KEM involves the use of the following
symmetric primitives:

• Hash function H for hashing a public key,
• Hash function G for deriving a sharing key and a seed.

KeyGen(1λ):

1: (pk, sk′)← SMAUG-T.PKE.KeyGen(1λ)
2: d← {0, 1}256
3: return pk, sk = (sk′, d, pk)

Encap(pk): ▷ pk = (seedA,b)

1: µ← {0, 1}256
2: (K, seed)← G(µ,H(pk))
3: ct← SMAUG-T.PKE.Enc(pk, µ; seed)
4: return ct, K

Decap(sk, ct): ▷ sk = (sk′, d, pk)

1: µ′ = SMAUG-T.PKE.Dec(sk′, ct)
2: (K′, seed′)← G(µ′, H(pk))
3: ct′ = SMAUG-T.PKE.Enc (pk, µ′; seed′)
4: (K̂, · )← G(d,H(ct))
5: if ct ̸= ct′ then
6: K′ ← K̂
7: return K′

Fig. 8: Description of SMAUG-T.KEM

As in the SMAUG-T.PKE, we can easily construct the TiMER parameter set,
which uses the TiMER parameter set of SMAUG-T.PKE in a black-box manner,
with the following change:

• Reduced randomness space and entropy for µ, from {0, 1}256 to {0, 1}128

The Fujisaki-Okamoto transform used in Figure 8 defers from the FO ̸⊥
m trans-

form in [48] in encapsulation and decapsulation. When generating the sharing
key and randomness, SMAUG-T’s Encap utilizes the hashed public key, which

20



prevents certain multi-target attacks. As for Decap, if ct ̸= ct′ holds, an alter-
native sharing key should be re-generated so as not to leak failure information
against Side-Channel Attacks (SCA). However, even when the failure informa-
tion is leaked, security can still rely on the explicit FO transform FO⊥

m, recently
treated in [47] with a competitive bound.

We also remark that the randomly chosen message µ should be hashed in
the environments using a non-cryptographic Random Number Generator (RNG)
system. A True Random Number Generator (TRNG) is recommended to sample
the message µ in such devices.

We now show the completeness of SMAUG-T.KEM based on the completeness
of the underlying public key encryption scheme, SMAUG-T.PKE.

Theorem 3 (Completeness of SMAUG-T.KEM). We borrow the notations
and assumptions from Theorem 2 and Figure 8. Then SMAUG-T.KEM in Fig-
ure 8 is also (1 − δ)-correct. That is, for every key-pair (pk, sk) generated by
KeyGen(1λ), the shared keys K and K ′ are identical with probability larger than
1− δ.

Proof. The shared keys K and K ′ are identical if the decryption succeeds. As-
suming the pseudorandomness of the hash function G, the probability of being
K ̸= K ′ can be bounded by the DFP of SMAUG-T.PKE. The completeness of
SMAUG-T.PKE (Theorem 2) concludes the proof. ⊓⊔

4.3 Security proof

When proving the security of the KEMs constructed using FO transform in
the (Q)ROM, on typically relies on the generic reductions from one-wayness
or IND-CPA security of the underlying PKE. In the ROM, SMAUG-T.KEM has
a tight reduction from the IND-CPA security of the underlying PKE, SMAUG-
T.PKE. However, like other lattice-based constructions, the underlying PKE has
a chance of decryption failures, which makes the generic reduction unapplica-
ble [59] or non-tight [13,47,48] in the QROM. Therefore, we prove the IND-CCA
security of SMAUG-T.KEM based on the non-tight QROM reduction of [13] as
explained in Section 2 by proving the IND-CPA security of SMAUG-T.PKE.

Theorem 4 (IND-CPA security of SMAUG-T.PKE). Assuming pseudoran-
domness of the underlying sampling algorithms, the IND-CPA security of SMAUG-
T. PKE can be tightly reduced to the decisional MLWE and MLWR problems.
Specifically, for any IND-CPA-adversary A of SMAUG-T.PKE, there exist adver-
saries B0, B1, B2, and B3 attacking the pseudorandomness of XOF, and the pseu-
dorandomness of sampling algorithms, the hardness of MLWE, and the hardness
of MLWR, respectively, such that,

AdvIND-CPA
SMAUG-T.PKE(A) ≤ AdvPRXOF(B0) + AdvPRexpandA,HWT,dGaussian(B1)

+ AdvMLWE
n,q,k,k(B2) + AdvMLWR

n,p,q,k+1,k(B3).

21



The secret distribution terms omitted in the last two advantages (of B1 and
B2) are uniform over ternary polynomials with Hamming weights hs and hr,
respectively. The error distribution term omitted in the advantage of B2 is a
pseudorandom distribution following the corresponding CDT.

Proof. The proof proceeds by a sequence of hybrid games from G0 to G4 defined
as follows:

• G0: the genuine IND-CPA game,
• G1: identical to G0, except that the public key is changed into (A,b),
• G2: identical to G1, except that the sampling algorithms are changed into
truly random samplings,

• G3: identical to G2, except that b is randomly chosen from Rk
q ,

• G4: identical to G3, except that the ciphertext is randomly choosen from
Rk

p ×Rp′ . As a result, the public key and the ciphertexts are truly random.

We denote the advantage of the adversary on each game Gi as Advi, where
Adv0 = AdvIND-CPA

SMAUG-T.PKE(A) and Adv4 = 0. Then, it holds that

|Adv0 − Adv1| ≤ AdvPRXOF(B0),

for some adversary B0 against the pseudorandomness of the extendable output
function. Given that the only difference between the transcripts viewed in hybrid
games G1 and G2 is the randomness sampling, it can be concluded that

|Adv1 − Adv2| ≤ AdvPRexpandA,HWT,dGaussian(B1),

for some adversary, B1 attacking the pseudorandomness of at least one of the
samplers. The difference in the games G2 and G3 is in the way the polynomial
vector b is sampled. In G2, it is sampled as part of an MLWE sample, whereas
in G3, it is randomly selected. Thus, the difference in the advantages Adv2 and
Adv3 can be bounded by AdvMLWE

n,q,k,k(B2), where B2 is an adversary distinguishing
the MLWE samples from random. In the hybrids G3 and G4, the only difference
is in the way the ciphertexts are generated; they are either randomly chosen
from Rk

p ×Rp′ or generated to be (c1, ⌊p′/p · c2⌉), where[
c1
c2

]
=

⌊
p

q
·
(

A
b⊤

)
· r
⌉
+

p

t
·
[
0
µ

]
.

If an adversary A can distinguish the two ciphertexts, we can construct an
adversary B3 distinguishing the MLWR sample from random: for given a sample

(A,b) ∈ R(k+1)×k
q × Rk+1

p , B3 rewrites b as (b1, b2) ∈ Rk
p × Rp, computes

(b1, ⌊p′/p · b2⌉), and use A to decide the ciphertext type. The output of A will
be the output of B3. Therefore, we can conclude the proof by observing that

|Adv3 − Adv4| ≤ AdvMLWR
n,p,q,k+1,k(B3).

⊓⊔

22



Again, the D2 encoding does not introduce any changes in the above proof,
as the encoded messages are added to a full random MLWR instances, assuming
the MLWR hardness.

The classical IND-CCA security of SMAUG-T.KEM is then obtained directly
from FO transforms [47] in the classical random oracle model. Theorem 1 implies
the quantum IND-CCA security of SMAUG-T.KEM in the quantum random oracle
model.

The TiMER parameter set is well-suited for lightweight IoT environments
thanks to its smaller ciphertext size. However, the use of D2 encoding and the
smaller randomness space may affect security in the future. For better-ensuring
security when using TiMER parameter set, it is recommended to limit the number
of Encap/Decap by considering the operating environment.

5 Parameter selection and concrete security

In this section, we first give a concrete security analysis of SMAUG-T and provide
the parameter sets.

5.1 Concrete security estimation

We exploit the best-known lattice attacks to estimate the concrete security of
SMAUG-T.

5.1.1 Core-SVP methodology. Most of the known attacks are essentially
finding a nonzero short vector in Euclidean lattices, using the Block–Korkine–
Zolotarev (BKZ) lattice reduction algorithm [22, 46, 60]. BKZ has been used
in various lattice-based schemes [2, 16, 34, 39, 65]. The security of the schemes
is generally estimated as the time complexity of BKZ in core-SVP hardness
introduced in [4]. It depends on the block size β of BKZ reporting the best
performance. According to Becker et al. [9] and Chailloux et al. [21], the β-BKZ
algorithm takes approximately 20.292β+o(β) and 20.257β+o(β) time in the classical
and quantum setting, respectively. The polynomial factors and o(β) terms in the
exponent are ignored. We use the lattice estimator [1] to estimate the concrete
security of SMAUG-T in core-SVP hardness.

5.1.2 Beyond Core-SVP methodology. In addition to lattice reduction
attacks, we also take into consideration the cost of other types of attacks, e.g.,
algebraic attacks like the Arora-Ge attack or Coded-BKW attacks, and their
variants. In general, these attacks have considerably higher costs and memory
requirements compared to previously introduced attacks.

MLWE with fixed Hamming weight secret. We also focus on the attacks not
considered in the lattice estimator, specifically those that target sparse secret,

23



such as Meet-LWE [57] attack. This attack is inspired by Odlyzko’s Meet-in-the-
Middle approach and involves using representations of ternary secrets in additive
shares. The asymptotic attack complexity is claimed as S0.25; however, it is far
from the estimated attack costs in SMAUG-T parameter sets. Even the estimated
cost has a significant gap with the real attack, due to the hidden costs behind
the estimation.

MLWE with spCBD. When using spCBD, the number of non-zero coefficients is
not fixed. Attacks like May’s Meet-LWE [57] or Lee et al. [54] cannot be directly
applied. As the distribution of h follows the binomial distribution centered at
n ·2r, an attacker can guess h = n ·2r or a value close to it and apply the attack.
The probability of a correct guess is(

n

h

)
· (2r)h · (1− 2r)n−h ,

which should be considered for the attack cost estimation. We note the value
achieves the maximum when h = ⌊n · 2r⌋. Therefore, one can estimate the total
cost of MLWE with spCBD secret as

min
h

{
ATKh(

n
h

)
· (2r)h · (1− 2r)n−h

}
, (1)

where ATKh is the attack cost of [54] for MLWE with a secret having a fixed
Hamming weight of h. For a rough estimation, we follow [54] and assume the

attack cost ATKh is greater than
(
n
h

)0.21
, the secret space size to the power of

0.21, resulting in an asymptotic lower bound of the attack cost of

min
h

{
1(

n
h

)0.79 · (2r)h · (1− 2r)n−h

}
. (2)

Depending on the parameters, the use of spCBD increases the attack cost
compared to a fixed Hamming weight of h = n · 2r but also decreases the DFP
in practice.

We summarize the costs of the algebraic and combinatorial attacks in Ta-
ble 2. Attack costs for Arora-Ge and Coded-BKW are estimated with lattice
estimator [1]. The estimated cost of Arora-Ge attack on SMAUG-T256 is not de-
termined by lattice-estimator, outputting∞, which is at least a thousand bits of
security. The costs for the Meet-LWE attack are estimated with a python script7

based on May’s analysis [57], best among Rep-1 and Rep-2. In addition, we also
consider the attack of Lee et al. [54] and its variant.8 The hardness of an MLWE

7 The script can be found on the team SMAUG-T website: http://kpqc.cryptolab
.co.kr/

8 We remark that the attack of Lee et al. and its cost estimation is not yet verified;
however, it is worth adding such a countermeasure to the scheme against the attacks.

24

http://kpqc.cryptolab.co.kr/
http://kpqc.cryptolab.co.kr/


sample with the secret of a fixed Hamming weight is given based on the anal-
ysis of [54]. For the hardness of an MLWR sample with the secret of non-fixed
weight spCBD sampler, we applied a variant of the attack as described in Sec-
tion 5.1.2: We first find h that minimizes the Equation 2 (h = 102, 102, 384, 352)
then we calculate the attack cost based on the Equation 1. However, as we are
unaware of Lee et al.’s attack cost estimator exactly for each h, we give a lower
bound of our attack based on their analysis. By using the ATKh′ that we know
(h′ = 100, 100, 264, 348), satisfying h′ < h so that ATKh > ATKh′ holds. This
means that we only give a lower bound of the attack cost estimation, which can
be improved using the estimator of Lee et al.

Parameters sets TiMER SMAUG-T128 SMAUG-T192 SMAUG-T256
Security level 1 1 3 5

Classical core-SVP 119.7 119.7 180.2 250.1

Algebraic & Combinatorial attacks

Arora-Ge
time 693.6 693.6 - -
(mem) (553.0) (553.0) (908.9) -

BKW
time 144.7 144.7 213.7 269.0
(mem) (132.7) (132.7) (202.1) (257.0)

Meet-LWE
time 177.2 177.2 295.6 401.4
(mem) (157.4) (157.4) (259.1) (353.1)

Lee et al. [54]∗ time (148, 132) (148, 132) (236, 241) (309, 317)

Table 2: Attack costs beyond Core-SVP. The estimated cost of the Arora-Ge
attack sometimes overflowed, implying that it requires at least 21000 of opera-
tions. For the attack of Lee et al., we apply our modifications detailed in Sec-
tions 5.1.2, where the estimated costs are given for both keys (MLWE) and
ciphertexts (MLWR).

5.1.3 MLWE hardness. We estimated the cost of the best-known attacks
for MLWE, including primal attack, dual attack, and their hybrid variations,
in the core-SVP hardness. We remark that any MLWEn,q,k,ℓ,η instance can be
viewed as an LWEq,nk,nℓ,η instance. Although the MLWE problem has an addi-
tional algebraic structure compared to the LWE problem, no attacks currently
take advantage of this structure. Therefore, we assess the hardness of the MLWE
problem based on the hardness of the corresponding LWE problem. We also con-
sider the distributions of secret and noise when estimating the concrete security
of SMAUG-T. We have also analyzed the costs of recent attacks that aim to
target the MLWE problem with sparse secrets. Our narrow discrete Gaussian
sampler’s tail bound is considered in estimating the security using the lattice
estimator.

25



5.1.4 MLWR hardness. To measure the hardness of the MLWR problem,
we treat it as an MLWE problem since no known attack utilizes the deterministic
error term in the MLWR structure. Banerjee et al. [8] provided the reduction
from the MLWE problem to the MLWR problem, which was subsequently im-
proved in [5,6,15]. Basically, for given an MLWR sample (A, ⌊p/q ·A ·s⌉ mod p)
with uniformly chosen A← Rk

q and s← Rℓ
p, it can be expressed as (A, p/q ·(A·s

mod q) + e mod p). The MLWR sample can be converted to an MLWE sample
over Rq by multiplying q/p as (A,b = A · s + q/p · e mod q). Assuming that
the error term in the resulting MLWE sample is a random variable, uniformly
distributed within the interval (−q/2p, q/2p], we can estimate the hardness of
the MLWR problem as the hardness of the corresponding MLWE problem.

5.2 Parameter sets

The SMAUG-T is parameterized by various integers such as n, k, q, p, p′, t, hs and
hr, as well as a standard deviation σ > 0 for the discrete Gaussian noise. Our
main focus when selecting these parameters is to minimize the ciphertext size
while maintaining security. We first set our ring dimension to n = 256 and
plaintext modulus to t = 2 to have a 256-bit (for SMAUG-T128, 192, 256) or
128-bit (for TiMER) message space. The sharing-key space is 256-bit for all the
parameter sets. Then, we search for parameters with enough security to offer the
smallest ciphertext size. Starting from parameters with a tiny ciphertext size,
we increase the ciphertext size, hs, r, and σ, then search for the parameters
with enough security. Once we have a candidate, we compute the DFP. If it is
low enough, we can choose the compression parameter p′, but if not, we continue
searching for appropriate parameters. If the DFP is low enough, the compression
factor p′ can be set to a smaller integer.

Table 3 outlines the whole set of recommended parameters corresponding to
NIST’s security levels 1, 3, and 5. For security levels 3 and 5, we can not find
the parameters with q = 1024, so we use q = 2048. Especially, the standard
deviation σ = 1.0625 is the same across the whole parameter sets.

TiMER, an additional parameter set, further investigates the room for effi-
ciency, introducing the D2 encoding to SMAUG-T128. It has a 64-byte smaller
ciphertext size than SMAUG-T128. TiMER sufficiently lowers DFP through D2
encoding and error reconciliation techniques. Thanks to this lowered DFP, p′

was reduced from 32 to 8, further compressing the ciphertext.

The core-SVP hardness is estimated via the lattice estimator [1] using the
cost model “ADPS16” introduced in [4] and “MATZOV” [56]. In the table, the
smaller cost is reported. We assumed that the number of 1s is equal to the
number of −1s for simplicity, which conservatively underestimates security.

The security beyond core-SVP is estimated via the lattice estimator [1] and
the Python script implementing the Meet-LWE attack cost estimation. It shows
the lowest attack costs among coded-BKW, Arora-Ge, and Meet-LWE attack
and their variants.

26



Parameters sets TiMER SMAUG-T128 SMAUG-T192 SMAUG-T256
Security level 1 1 3 5

n 256 256 256 256
k 2 2 3 4

(q, p, t) (1024, 256, 2) (1024, 256, 2) (2048, 512, 2) (2048, 512, 2)
p′ (compression) 8 32 16 128
hs (HWT for s) 140 140 264 348
r (spCBD for r) 1/8 1/8 1/4 3/16

σ (D̃σ for errors) 1.0625 1.0625 1.0625 1.0625

Classical core-SVP 119.7 119.7 180.2 250.1
Quantum core-SVP 105.4 105.4 158.6 221.0
Beyond core-SVP 132 132 214 269

DFP -161.0 -118.3 -179.2 -194.2

Public key 672 672 1088 1440
Ciphertext 608 672 992 1376

Table 3: Parameters for SMAUG-T. Classical and quantum security is given in
core-SVP hardness. The DFP (in log2) and sizes (in bytes) are also given in
advance.

5.3 Decryption failure probability

Our primary goal is to push the efficiency of the lattice-based KEMs to the limit
while maintaining roughly the same level of security, so we follow the frameworks
given in Kyber and Saber. We set the DFPs as small as ≈ 2−λ for a desired
security parameter λ, except for the SMAUG-T256 parameter set. We set the
DFP of SMAUG-T256 at least much smaller than that of Kyber and Saber.

The impact of DFP on the security of KEM is still being investigated. How-
ever, we can justify why our choice is sufficient for real-world scenarios, focusing
on SMAUG-T256. To do so, we make the following assumptions:

1. Each key pair has a limit of Qlimit = 264 decryption queries, as specified in
NIST’s proposal call.

2. There are approximately 233 people worldwide, each with hundreds of de-
vices. Each device has thousands of usable public keys broadcasted for KEM.

3. We introduce an observable probability and assume it is far less than 2−20.
Even though the decryption failure occurs, it can only be used for an at-
tack when observed. Attackers can observe it through a side-channel attack,
which enables the observation of decapsulation failures in the mounted de-
vice or through direct communications after key derivation. This allows the
detection of decryption failures with a communication per key pair. We as-
sume the two cases can occur much less than 2−20, as they require physically
mounted devices or communications with shared keys.

Based on these assumptions, we can deduce that the number of observable
decryption failures can be upper bounded by 264+33+10+12 · 2−20 = 299. Based
on the best-known (multi-target) attacks for Saber [30, Figure 7a], the quantum

27



cost for finding a single failing ciphertext that may lead to a successful attack of
SMAUG-T256 is expected to be much higher than 2300, as desired9. Regardless
of the attack cost estimated above, the scenario of checking the failures in more
than 240 different devices is already way too far from the real-world attack
scenario.

6 Implementation

In this section, we consider the implementation of SMAUG-T and present the
performance for each parameter set. We provide a few C implementations: The
constant-time reference implementation of SMAUG-T parameter sets can be
found in the reference implementation, and an optimized implementation uti-
lizing AVX2 intrinsics on Intel(R) is included in the optimized implementation.
Additionally, the TiMER parameter set, designed for lightweight environments,
is available in the additional implementation. Our implementations, along
with the supporting scripts, are accessible on our website: www.kpqc.cryptol
ab.co.kr/smaug-t.

6.1 Implementation considerations

The most critically time-consuming component in SMAUG-T is the symmetric
primitive. We chose SHA3 as the symmetric variant, which occupies about 30%
to 40% of the cycles according to the reference implementation. Being based on
the Keccak permutation, SHA3 is not the fastest algorithm in software. Thus its
usage may impose performance constraints compared to 90s symmetrics (AES,
SHA2). However, similar to how ARM provides hardware acceleration for SHA3
on ARMv8 processors, this is not expected to be a problem in the future.

To measure the achieved performance of SMAUG-T, we also provide an opti-
mized implementation that uses 90s symmetrics. This implementation serves
as benchmark code to demonstrate optimized performance by utilizing AES
and SHA2 instead of other symmetric algorithms. Consequently, this leads to
differences in the test vector when compared to the reference implementation.
The optimized implementation using 90s symmetric can be found at optimized
implementation/kem-90s.

6.2 Performance

In the reference implementation and additional implementation, we instantiate
the hash functions G,H, the extendable output function XOF, and the pseudo-
random function PRF with the following symmetric primitives: G and PRF are
instantiated with SHAKE256, H is instantiated with SHA3-256, XOF is instan-
tiated with SHAKE128.
9 Specifically, the number of observable failures must be larger than 1/β in [30] to
observe at least one failing ciphertext. That is, β should be smaller than 2−93. When
this is assumed, the quantum cost is then 1/β

√
α, given in the x-axis.

28

www.kpqc.cryptolab.co.kr/smaug-t
www.kpqc.cryptolab.co.kr/smaug-t


Table 4 presents the performance results of SMAUG-T. For a fair compari-
son, we also performed measurements on the same system with identical settings
of the reference implementation of Kyber 10. All benchmarks are obtained on
one core of an Intel(R) Core(TM) i7-10700K CPU processor with a clock speed
of 3.80GHz. The benchmarking machine has 64 GB of RAM and runs Debian
GNU/Linux with Linux kernel version 5.4.0. The implementation is compiled
with gcc version 11.4.0, and the compiler flags as indicated in the Makefile in-
cluded in the submission package.

Cycles (ref) Cycles (AVX2)

Schemes KeyGen Encap Decap KeyGen Encap Decap

TiMER 110 1 100 1 135 1 - - -

SMAUG-T128 110 1 100 1 136 1 38 1 23 1 35 1

Kyber512 128 1.2 158 1.6 187 1.4 27 0.7 39 1.7 29 0.8

SMAUG-T192 219 1 204 1 253 1 57 1 46 1 61 1

Kyber768 209 1 255 1.3 286 1.1 44 0.8 65 1.4 44 0.7

SMAUG-T256 357 1 334 1 414 1 77 1 65 1 86 1

Kyber1024 321 0.9 369 1.1 414 1 60 0.8 79 1.2 63 0.7

Table 4: Median kilocycle counts of 1000 executions for SMAUG-T and Kyber
(and their ratios). “ref” refers to the C implementation, while “AVX2” refers to
the implementation with AVX2 intrinsics.

In the optimized implementation, we offer two options for the symmetric
primitives. The default implementation located in optimized implementation/

kem uses all symmetric primitives identically to the reference implementation. In
the 90s symmetric implemenation found in optimized implementation/kem-90s,
we instantiate the hash functions G,H, the extendable output function XOF, and
the pseudo random function PRF with the following symmetric primitives: G is
instantiated with SHA2-512, H is instantiated with SHA2-256, and both XOF
and PRF are instantiated with AES.

SMAUG-T optimized implementation using AVX2 intrinsics achieved a speed
up of about x3 - x5.2, while the optimized implementation using 90s symmet-
ric achieved a speed up of about x4.2 - x7.9. All measurement methods and
conditions are identical to those of Table 4.

10 From github.com/pq-crystals/kyber (518de24)

29

github.com/pq-crystals/kyber


7 Side Channel Analysis

SMAUG-T is a scheme based on MLWE and MLWR that has many similarities
to Kyber and Saber. As a result of the NIST competition, much research has
been conducted on side-channel analysis and countermeasures for Kyber and
Saber [10,18]. These previous findings can also be applied to SMAUG-T. There-
fore, we decided to focus our analysis on the characteristic designs in which
SMAUG-T differs from Kyber or Saber. While KpqC round 1 focused on tim-
ing attacks, power/EM-based attacks are becoming increasingly critical with
advanced attack techniques and tools, necessitating proactive countermeasures.
In particular, the recently announced clustering attack [62] has become a more
lethal threat due to the small number of traces and advances in deep learning
technology. Thus, we discuss the security of SMAUG-T against physical attacks
based on power/EM.

7.1 Timing analysis

Samplers. At present, SMAUG-T has been carefully implemented to avoid
time variations such as branches with respect to secrets. For key generation, a
shuffling-based constant-time and unbiased fixed-weight sampler has been used
as the fixed-weight sampler. Furthermore, for ephemeral randomness in encap-
sulation/decapsulation, we propose a new constant-time sparse CBD sampler.
This sampler is constructed solely from bit operations, making it highly secure
and efficient for implementation. Previous PQC algorithms utilizing Gaussian
noises have employed various Gaussian samplers. However, designing Gaussian
samplers that operate in constant-time is challenging, and BLISS has suffered
from timing attacks [42]. We adopted dGaussianσ, a constant-time implementa-
tion well-known for its efficacy, into SMAUG-T to mitigate timing attacks.

D2 encoding and error reconciliation. As mentioned earlier, D2 encoding
and error reconciliation were used in NewHope, and due to modulus reduction,
the D2 implementation was not constant-time. In NewHope, they solved this
problem with constant-time Barrett reduction. On the other hand, in TiMER,
since the modulus is all powers of 2, the modulus reduction can be replaced by
a shift operation, eliminating the attack surface.

7.2 Differential analysis

dGaussianσ sampler. Potential vulnerabilitie related to Power/EM-based SCA
for dGaussianσ was reported during KpqC round 1. There were no specific at-
tack scenario and applying this vulnerability in real-world environments may be
challenging; however, recent advancements in deep-learning and clustering tech-
nologies suggest that this attack could become a practical vulnerability. There-
fore, we applied a countermeasure to dGaussianσ to prevent these attacks. In the
public key generation process of SMAUG-T, the dGaussianσ function produces

30



integer intermediate values within the range of [-3, 3] when generating Gaussian
errors. The significant hamming weight difference between positive and negative
values distinguishes these values into two sets. (ex, {-3, -2, -1} / {0, 1, 2, 3})
With this distinction and linear algebraic approach, there is the possibility of
recovering secret keys or reducing candidates.

Therefore, countermeasures are necessary. First, we consider masking tech-
niques. However, designing a general random masking scheme efficiently in sit-
uations with numerous nonlinear bit-operations can be challenging and may
incur significant overhead. For example, Krausz et al. [52] have recently pro-
posed masking methods for the fixed hamming weight sampler; their efficiency
is lacking, so we see it as future work. Hiding can be considered as another
countermeasure. This attack involves logic that categorizes coefficients during
the key generation process, making it difficult to distinguish which coefficients
belong to which set is sufficient to respond effectively. Therefore, applying hid-
ing would be more effective than masking. The errors are calculated in Figure 5
and then stored sequentially in each index. We applied the Fisher-Yates shuffle
algorithm only to the corresponding loops and the loops where those values are
utilized. In environments such as TLS, key generation is typically performed
on servers with high-performance capabilities and operates less frequently than
encryption. Therefore, such countermeasures will have a minimal impact on the
cryptographic system.

D2 encoding and error reconciliation. During the KpqC round 1, Hee-Seok
Kim reported the vulnerability related to power analysis caused by differences
in the Hamming weight of the mask variable in the D2 encoding process. This
attack was complemented in TiGER v2.1 by changing the mask variable to 1 and
0 and applying a countermeasure to minimize the Hamming weight difference.
TiMER also prevents such vulnerability with the same countermeasure.

Acknowledgments. Part of this work was done while Dongyeon Hong was
in CryptoLab Inc. during KpqC round 1. Part of this specification is from its
conference version [23].

31



References

1. Albrecht, M.R., Player, R., Scott, S.: On the concrete hardness of learning with
errors. Journal of Mathematical Cryptology 9(3), 169–203 (2015)

2. Alkim, E., Barreto, P.S.L.M., Bindel, N., Kramer, J., Longa, P., Ricardini, J.E.:
The lattice-based digital signature scheme qtesla. Cryptology ePrint Archive, Paper
2019/085 (2019), https://eprint.iacr.org/2019/085

3. Alkim, E., Bos, J., Ducas, L., Longa, P., Mironov, I., Naehrig, M., Nikolaenko, V.,
Peikert, C., Raghunathan, A., Stebila, D.: Frodokem: Algorithm specifications and
supporting documentation (2021)

4. Alkim, E., Ducas, L., Pöppelmann, T., Schwabe, P.: Post-quantum key exchange
- A new hope. In: Holz, T., Savage, S. (eds.) USENIX Security 2016. pp. 327–343.
USENIX Association (Aug 2016)

5. Alperin-Sheriff, J., Apon, D.: Dimension-preserving reductions from lwe to lwr.
Cryptology ePrint Archive, Paper 2016/589 (2016), https://eprint.iacr.org/
2016/589

6. Alwen, J., Krenn, S., Pietrzak, K., Wichs, D.: Learning with rounding, revisited.
In: Canetti, R., Garay, J.A. (eds.) Advances in Cryptology – CRYPTO 2013. pp.
57–74. Springer Berlin Heidelberg, Berlin, Heidelberg (2013)

7. Arora, S., Ge, R.: New algorithms for learning in presence of errors. In: Aceto,
L., Henzinger, M., Sgall, J. (eds.) Automata, Languages and Programming. pp.
403–415. Springer Berlin Heidelberg, Berlin, Heidelberg (2011)

8. Banerjee, A., Peikert, C., Rosen, A.: Pseudorandom functions and lattices. In:
Pointcheval, D., Johansson, T. (eds.) Advances in Cryptology – EUROCRYPT
2012. pp. 719–737. Springer Berlin Heidelberg, Berlin, Heidelberg (2012)

9. Becker, A., Ducas, L., Gama, N., Laarhoven, T.: New directions in nearest neighbor
searching with applications to lattice sieving, pp. 10–24. Society for Industrial and
Applied Mathematics (2016). https://doi.org/10.1137/1.9781611974331.ch2

10. Beirendonck, M.V., D’anvers, J.P., Karmakar, A., Balasch, J., Verbauwhede, I.: A
side-channel-resistant implementation of saber. J. Emerg. Technol. Comput. Syst.
17(2) (apr 2021). https://doi.org/10.1145/3429983

11. Bermudo Mera, J.M., Karmakar, A., Verbauwhede, I.: Time-memory trade-off in
toom-cook multiplication: an application to module-lattice based cryptography.
IACR Transactions on Cryptographic Hardware and Embedded Systems 2020(2),
222–244 (2020)

12. Bi, L., Lu, X., Luo, J., Wang, K.: Hybrid dual and meet-LWE attack. In: Nguyen,
K., Yang, G., Guo, F., Susilo, W. (eds.) ACISP 22. LNCS, vol. 13494, pp. 168–188.
Springer, Cham (Nov 2022). https://doi.org/10.1007/978-3-031-22301-3_9

13. Bindel, N., Hamburg, M., Hövelmanns, K., Hülsing, A., Persichetti, E.: Tighter
proofs of CCA security in the quantum random oracle model. In: Hofheinz, D.,
Rosen, A. (eds.) TCC 2019, Part II. LNCS, vol. 11892, pp. 61–90. Springer, Cham
(Dec 2019). https://doi.org/10.1007/978-3-030-36033-7_3

14. Birkett, J., Dent, A.W.: Relations among notions of plaintext awareness. In:
Cramer, R. (ed.) Public Key Cryptography – PKC 2008. pp. 47–64. Springer Berlin
Heidelberg, Berlin, Heidelberg (2008)

15. Bogdanov, A., Guo, S., Masny, D., Richelson, S., Rosen, A.: On the hardness of
learning with rounding over small modulus. In: Kushilevitz, E., Malkin, T. (eds.)
Theory of Cryptography. pp. 209–224. Springer Berlin Heidelberg, Berlin, Heidel-
berg (2016)

32

https://eprint.iacr.org/2019/085
https://eprint.iacr.org/2016/589
https://eprint.iacr.org/2016/589
https://doi.org/10.1137/1.9781611974331.ch2
https://doi.org/10.1145/3429983
https://doi.org/10.1007/978-3-031-22301-3_9
https://doi.org/10.1007/978-3-030-36033-7_3


16. Bos, J., Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky, V., Schanck, J.M.,
Schwabe, P., Seiler, G., Stehlé, D.: Crystals-kyber: a cca-secure module-lattice-
based kem. In: 2018 IEEE European Symposium on Security and Privacy (Eu-
roS&P). pp. 353–367. IEEE (2018)

17. Bos, J.W., Costello, C., Ducas, L., Mironov, I., Naehrig, M., Nikolaenko, V., Raghu-
nathan, A., Stebila, D.: Frodo: Take off the ring! Practical, quantum-secure key
exchange from LWE. In: Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers,
A.C., Halevi, S. (eds.) ACM CCS 2016. pp. 1006–1018. ACM Press (Oct 2016).
https://doi.org/10.1145/2976749.2978425

18. Bos, J.W., Gourjon, M., Renes, J., Schneider, T., van Vredendaal, C.: Masking
Kyber: First- and higher-order implementations. IACR TCHES 2021(4), 173–214
(2021). https://doi.org/10.46586/tches.v2021.i4.173-214, https://tches.
iacr.org/index.php/TCHES/article/view/9064

19. Bossuat, J.P., Troncoso-Pastoriza, J.R., Hubaux, J.P.: Bootstrapping for approxi-
mate homomorphic encryption with negligible failure-probability by using sparse-
secret encapsulation. In: Ateniese, G., Venturi, D. (eds.) ACNS 22International
Conference on Applied Cryptography and Network Security. LNCS, vol. 13269,
pp. 521–541. Springer, Cham (Jun 2022). https://doi.org/10.1007/978-3-031
-09234-3_26

20. Boudgoust, K., Jeudy, C., Roux-Langlois, A., Wen, W.: On the hardness of module
learning with errors with short distributions. Journal of Cryptology 36(1), 1 (Jan
2023). https://doi.org/10.1007/s00145-022-09441-3

21. Chailloux, A., Loyer, J.: Lattice sieving via quantum random walks. In: Tibouchi,
M., Wang, H. (eds.) Advances in Cryptology - ASIACRYPT. pp. 63–91 (2021)

22. Chen, Y., Nguyen, P.Q.: BKZ 2.0: Better lattice security estimates. In: Lee, D.H.,
Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 1–20. Springer, Berlin,
Heidelberg (Dec 2011). https://doi.org/10.1007/978-3-642-25385-0_1

23. Cheon, J.H., Choe, H., Hong, D., Yi, M.: Smaug: Pushing lattice-based key en-
capsulation mechanisms to the limits. Cryptology ePrint Archive, Paper 2023/739
(2023), https://eprint.iacr.org/2023/739

24. Cheon, J.H., Choe, H., Hong, D., Yi, M.: SMAUG: Pushing lattice-based key
encapsulation mechanisms to the limits. In: Carlet, C., Mandal, K., Rijmen, V.
(eds.) SAC 2023. LNCS, vol. 14201, pp. 127–146. Springer, Cham (Aug 2024).
https://doi.org/10.1007/978-3-031-53368-6_7

25. Cheon, J.H., Han, K., Kim, A., Kim, M., Song, Y.: Bootstrapping for approximate
homomorphic encryption. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018,
Part I. LNCS, vol. 10820, pp. 360–384. Springer, Cham (Apr / May 2018). https:
//doi.org/10.1007/978-3-319-78381-9_14

26. Cheon, J.H., Han, K., Kim, J., Lee, C., Son, Y.: A practical post-quantum public-
key cryptosystem based on spLWE. In: Hong, S., Park, J.H. (eds.) ICISC 16. LNCS,
vol. 10157, pp. 51–74. Springer, Cham (Nov / Dec 2017). https://doi.org/10.1
007/978-3-319-53177-9_3

27. Cheon, J.H., Kim, D., Lee, J., Song, Y.: Lizard: Cut off the tail! A practical post-
quantum public-key encryption from LWE and LWR. In: Catalano, D., De Prisco,
R. (eds.) SCN 18. LNCS, vol. 11035, pp. 160–177. Springer, Cham (Sep 2018).
https://doi.org/10.1007/978-3-319-98113-0_9

28. Chung, C.M.M., Hwang, V., Kannwischer, M.J., Seiler, G., Shih, C.J., Yang, B.Y.:
NTT multiplication for NTT-unfriendly rings: New speed records for Saber and
NTRU on Cortex-M4 and AVX2. IACR Transactions on Cryptographic Hardware
and Embedded Systems 2021(2), 159–188 (Feb 2021). https://doi.org/10.465

33

https://doi.org/10.1145/2976749.2978425
https://doi.org/10.46586/tches.v2021.i4.173-214
https://tches.iacr.org/index.php/TCHES/article/view/9064
https://tches.iacr.org/index.php/TCHES/article/view/9064
https://doi.org/10.1007/978-3-031-09234-3_26
https://doi.org/10.1007/978-3-031-09234-3_26
https://doi.org/10.1007/s00145-022-09441-3
https://doi.org/10.1007/978-3-642-25385-0_1
https://eprint.iacr.org/2023/739
https://doi.org/10.1007/978-3-031-53368-6_7
https://doi.org/10.1007/978-3-319-78381-9_14
https://doi.org/10.1007/978-3-319-78381-9_14
https://doi.org/10.1007/978-3-319-53177-9_3
https://doi.org/10.1007/978-3-319-53177-9_3
https://doi.org/10.1007/978-3-319-98113-0_9
https://doi.org/10.46586/tches.v2021.i2.159-188
https://doi.org/10.46586/tches.v2021.i2.159-188


86/tches.v2021.i2.159-188, artifact available at https://artifacts.iacr.org
/tches/2021/a7

29. Cook, S.A., Aanderaa, S.O.: On the minimum computation time of functions.
Transactions of the American Mathematical Society 142, 291–314 (1969)

30. D’Anvers, J.P., Batsleer, S.: Multitarget decryption failure attacks and their appli-
cation to Saber and Kyber. In: Hanaoka, G., Shikata, J., Watanabe, Y. (eds.)
PKC 2022, Part I. LNCS, vol. 13177, pp. 3–33. Springer, Cham (Mar 2022).
https://doi.org/10.1007/978-3-030-97121-2_1

31. D’Anvers, J.P., Guo, Q., Johansson, T., Nilsson, A., Vercauteren, F., Verbauwhede,
I.: Decryption failure attacks on ind-cca secure lattice-based schemes. In: Lin, D.,
Sako, K. (eds.) Public-Key Cryptography – PKC 2019. pp. 565–598. Springer In-
ternational Publishing, Cham (2019)

32. D’Anvers, J.P., Karmakar, A., Roy, S.S., Vercauteren, F.: Saber: Module-LWR
based key exchange, CPA-secure encryption and CCA-secure KEM. In: Joux, A.,
Nitaj, A., Rachidi, T. (eds.) AFRICACRYPT 18. LNCS, vol. 10831, pp. 282–305.
Springer, Cham (May 2018). https://doi.org/10.1007/978-3-319-89339-6_16

33. Dent, A.W.: A designer’s guide to kems. In: Cryptography and Coding: 9th IMA
International Conference, Cirencester, UK, December 16-18, 2003. Proceedings 9.
pp. 133–151. Springer (2003)

34. Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky, V., Schwabe, P., Seiler, G., Stehlé,
D.: CRYSTALS-Dilithium: A lattice-based digital signature scheme. IACR TCHES
2018(1), 238–268 (2018). https://doi.org/10.13154/tches.v2018.i1.238-268,
https://tches.iacr.org/index.php/TCHES/article/view/839

35. D’Anvers, J.P., Karmakar, A., Sinha Roy, S., Vercauteren, F.: Saber: Module-lwr
based key exchange, cpa-secure encryption and cca-secure kem. In: International
Conference on Cryptology in Africa. pp. 282–305. Springer (2018)

36. D’Anvers, J.P., Karmakar, A., Sinha Roy, S., Vercauteren, F.: Saber: Module-
lwr based key exchange, cpa-secure encryption and cca-secure kem. In: Progress
in Cryptology–AFRICACRYPT 2018: 10th International Conference on Cryptol-
ogy in Africa, Marrakesh, Morocco, May 7–9, 2018, Proceedings 10. pp. 282–305.
Springer (2018)

37. Espitau, T., Joux, A., Kharchenko, N.: On a dual/hybrid approach to small secret
LWE - A dual/enumeration technique for learning with errors and application to
security estimates of FHE schemes. In: Bhargavan, K., Oswald, E., Prabhakaran,
M. (eds.) INDOCRYPT 2020. LNCS, vol. 12578, pp. 440–462. Springer, Cham
(Dec 2020). https://doi.org/10.1007/978-3-030-65277-7_20

38. Filho, D.L.G., Silva, T.S.R., López, J.: Efficient isochronous fixed-weight sampling
with applications to NTRU. Cryptology ePrint Archive, Paper 2024/548 (2024),
https://eprint.iacr.org/2024/548, https://eprint.iacr.org/2024/548

39. Fouque, P.A., Hoffstein, J., Kirchner, P., Lyubashevsky, V., Pornin, T., Prest, T.,
Ricosset, T., Seiler, G., Whyte, W., Zhang, Z.: Falcon: Fast-fourier lattice-based
compact signatures over ntru. Submission to the NIST’s post-quantum cryptogra-
phy standardization process 36(5) (2018)

40. Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric encryp-
tion schemes. In: Wiener, M.J. (ed.) CRYPTO’99. LNCS, vol. 1666, pp. 537–554.
Springer, Berlin, Heidelberg (Aug 1999). https://doi.org/10.1007/3-540-484
05-1_34

41. Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric en-
cryption schemes. Journal of Cryptology 26(1), 80–101 (Jan 2013). https:

//doi.org/10.1007/s00145-011-9114-1

34

https://doi.org/10.46586/tches.v2021.i2.159-188
https://doi.org/10.46586/tches.v2021.i2.159-188
https://artifacts.iacr.org/tches/2021/a7
https://artifacts.iacr.org/tches/2021/a7
https://doi.org/10.1007/978-3-030-97121-2_1
https://doi.org/10.1007/978-3-319-89339-6_16
https://doi.org/10.13154/tches.v2018.i1.238-268
https://tches.iacr.org/index.php/TCHES/article/view/839
https://doi.org/10.1007/978-3-030-65277-7_20
https://eprint.iacr.org/2024/548
https://eprint.iacr.org/2024/548
https://doi.org/10.1007/3-540-48405-1_34
https://doi.org/10.1007/3-540-48405-1_34
https://doi.org/10.1007/s00145-011-9114-1
https://doi.org/10.1007/s00145-011-9114-1


42. Groot Bruinderink, L., Hülsing, A., Lange, T., Yarom, Y.: Flush, gauss, and reload–
a cache attack on the bliss lattice-based signature scheme. In: International Confer-
ence on Cryptographic Hardware and Embedded Systems. pp. 323–345. Springer
(2016)

43. Guo, Q., Johansson, T., Stankovski, P.: Coded-bkw: Solving lwe using lattice codes.
In: Annual Cryptology Conference. pp. 23–42. Springer (2015)

44. Halevi, S., Shoup, V.: Bootstrapping for HElib. In: Oswald, E., Fischlin, M. (eds.)
EUROCRYPT 2015, Part I. LNCS, vol. 9056, pp. 641–670. Springer, Berlin, Hei-
delberg (Apr 2015). https://doi.org/10.1007/978-3-662-46800-5_25

45. Hamburg, M.: Threebears. In: Second PQC Standardization Conference. University
of California, Santa Barbara, USA (2019)

46. Hanrot, G., Pujol, X., Stehlé, D.: Algorithms for the shortest and closest lattice
vector problems. In: Chee, Y.M., Guo, Z., Ling, S., Shao, F., Tang, Y., Wang, H.,
Xing, C. (eds.) Coding and Cryptology. pp. 159–190. Springer Berlin Heidelberg,
Berlin, Heidelberg (2011)

47. Hofheinz, D., Hövelmanns, K., Kiltz, E.: A modular analysis of the Fujisaki-
Okamoto transformation. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017, Part I. LNCS,
vol. 10677, pp. 341–371. Springer, Cham (Nov 2017). https://doi.org/10.1007/
978-3-319-70500-2_12

48. Hövelmanns, K., Kiltz, E., Schäge, S., Unruh, D.: Generic authenticated key ex-
change in the quantum random oracle model. In: Kiayias, A., Kohlweiss, M.,
Wallden, P., Zikas, V. (eds.) PKC 2020, Part II. LNCS, vol. 12111, pp. 389–422.
Springer, Cham (May 2020). https://doi.org/10.1007/978-3-030-45388-6_14

49. Howgrave-Graham, N., Nguyen, P.Q., Pointcheval, D., Proos, J., Silverman, J.H.,
Singer, A., Whyte, W.: The impact of decryption failures on the security of ntru
encryption. In: Boneh, D. (ed.) Advances in Cryptology - CRYPTO 2003. pp.
226–246. Springer Berlin Heidelberg, Berlin, Heidelberg (2003)

50. Jiang, H., Zhang, Z., Chen, L., Wang, H., Ma, Z.: Ind-cca-secure key encapsu-
lation mechanism in the quantum random oracle model, revisited. In: Shacham,
H., Boldyreva, A. (eds.) Advances in Cryptology – CRYPTO 2018. pp. 96–125.
Springer International Publishing, Cham (2018)

51. Karatsuba, A.A., Ofman, Y.P.: Multiplication of many-digital numbers by au-
tomatic computers. In: Doklady Akademii Nauk. vol. 145, pp. 293–294. Russian
Academy of Sciences (1962)

52. Krausz, M., Land, G., Richter-Brockmann, J., Güneysu, T.: A holistic approach
towards side-channel secure fixed-weight polynomial sampling. In: Public-Key
Cryptography–PKC 2023: 26th IACR International Conference on Practice and
Theory of Public-Key Cryptography, Atlanta, GA, USA, May 7–10, 2023, Pro-
ceedings, Part II. pp. 94–124. Springer (2023)

53. Langlois, A., Stehlé, D., Steinfeld, R.: GGHLite: More efficient multilinear maps
from ideal lattices. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS,
vol. 8441, pp. 239–256. Springer, Berlin, Heidelberg (May 2014). https://doi.or
g/10.1007/978-3-642-55220-5_14

54. Lee, E., Lee, J., Wang, Y.: Improved Meet-LWE Attack via Ternary Trees. Cryptol-
ogy ePrint Archive, Paper 2024/824 (2024), https://eprint.iacr.org/2024/824

55. Lee, J., Kim, D., Lee, H., Lee, Y., Cheon, J.H.: Rlizard: Post-quantum key encap-
sulation mechanism for iot devices. IEEE Access 7, 2080–2091 (2018)

56. MATZOV: Report on the Security of LWE: Improved Dual Lattice Attack (Apr
2022). https://doi.org/10.5281/zenodo.6493704

35

https://doi.org/10.1007/978-3-662-46800-5_25
https://doi.org/10.1007/978-3-319-70500-2_12
https://doi.org/10.1007/978-3-319-70500-2_12
https://doi.org/10.1007/978-3-030-45388-6_14
https://doi.org/10.1007/978-3-642-55220-5_14
https://doi.org/10.1007/978-3-642-55220-5_14
https://eprint.iacr.org/2024/824
https://doi.org/10.5281/zenodo.6493704


57. May, A.: How to meet ternary LWE keys. In: Malkin, T., Peikert, C. (eds.)
CRYPTO 2021, Part II. LNCS, vol. 12826, pp. 701–731. Springer, Cham, Virtual
Event (Aug 2021). https://doi.org/10.1007/978-3-030-84245-1_24

58. Pöppelmann, T., Güneysu, T.: Towards practical lattice-based public-key encryp-
tion on reconfigurable hardware. In: Selected Areas in Cryptography–SAC 2013:
20th International Conference, Burnaby, BC, Canada, August 14-16, 2013, Revised
Selected Papers 20. pp. 68–85. Springer (2014)

59. Saito, T., Xagawa, K., Yamakawa, T.: Tightly-secure key-encapsulation mecha-
nism in the quantum random oracle model. In: Nielsen, J.B., Rijmen, V. (eds.)
EUROCRYPT 2018, Part III. LNCS, vol. 10822, pp. 520–551. Springer, Cham
(Apr / May 2018). https://doi.org/10.1007/978-3-319-78372-7_17

60. Schnorr, C.P., Euchner, M.: Lattice basis reduction: Improved practical algorithms
and solving subset sum problems. Mathematical programming 66(1), 181–199
(1994)

61. Sendrier, N.: Secure sampling of constant-weight words – application to bike. Cryp-
tology ePrint Archive, Paper 2021/1631 (2021), https://eprint.iacr.org/2021
/1631

62. Sim, B.Y., Park, A., Han, D.G.: Chosen-ciphertext clustering attack on crystals-
kyber using the side-channel leakage of barrett reduction. IEEE Internet of Things
Journal 9(21), 21382–21397 (2022). https://doi.org/10.1109/JIOT.2022.3179
683

63. Son, Y., Cheon, J.H.: Revisiting the hybrid attack on sparse secret lwe and ap-
plication to he parameters. In: Proceedings of the 7th ACM Workshop on En-
crypted Computing & Applied Homomorphic Cryptography. p. 11–20. WAHC’19,
Association for Computing Machinery, New York, NY, USA (2019). https:

//doi.org/10.1145/3338469.3358941

64. Toom, A.L.: The complexity of a scheme of functional elements realizing the mul-
tiplication of integers, published in soviet math (translations of dokl. adad. nauk.
sssr), 4 (1963)

65. Vercauteren, I.F., Sinha Roy, S., D’Anvers, J.P., Karmakar, A.: Saber: Mod-lwr
based kem, nIST PQC Round 3 Submision

36

https://doi.org/10.1007/978-3-030-84245-1_24
https://doi.org/10.1007/978-3-319-78372-7_17
https://eprint.iacr.org/2021/1631
https://eprint.iacr.org/2021/1631
https://doi.org/10.1109/JIOT.2022.3179683
https://doi.org/10.1109/JIOT.2022.3179683
https://doi.org/10.1145/3338469.3358941
https://doi.org/10.1145/3338469.3358941

	SMAUG-T: the Key Exchange Algorithm based on Module-LWE and Module-LWR

