
SMAUG: the Key Exchange Algorithm based on
Module-LWE and Module-LWR?

Jung Hee Cheon1,2, Hyeongmin Choe1, Dongyeon Hong2, Jeongdae Hong3,
Hyoeun Seong2, Junbum Shin2, and MinJune Yi1,2

1 Seoul National University
{jhcheon, sixtail528, yiminjune}@snu.ac.kr

2 CryptoLab Inc.
{decenthong93, she000, junbum.shin}@cryptolab.co.kr

3 Ministry of National Defense
ghjd2000@gmail.com

Abstract. In this documentation, we introduce a new lattice-based post-
quantum key encapsulation mechanism (KEM), a type of key exchange
algorithm that we submit to the Korean Post-Quantum Cryptography
Competition. Based on the hardness of the MLWE and MLWR problems,
defined in module lattices, we design an efficient public key encryption
(PKE) scheme SMAUG.PKE and KEM scheme SMAUG.KEM. With the
choice of sparse secret, SMAUG achieves ciphertext sizes up to 12% and
9% smaller than Kyber (NIST’s 2022 selection) and Saber (NIST’s final-
ist), with much faster running time, up to 103% and 58%, respectively.

Keywords: Lattice-based Cryptography · Post-Quantum Cryptogra-
phy · Key Encapsulation Mechanism · Module Learning With Errors
· Module Learning With Roundings.

? This work is submitted to ‘Korean Post-Quantum Cryptography Competition’
(www.kpqc.or.kr).

ii Cheon et al.

Changelog

May 23, 2023 First, we update the python script for DFP computation as
it was computing the decryption failure probability (DFP) wrongly. Note that
the script was missing in the submission file, but included in our website. The
parameter sets for NIST’s security levels 3 and 5 were having higher DFPs
thenthey were reported in the 1st round submission. As a result, the parameter
sets are updated.

Second, we additionally compress the ciphertexts. As compression makes the
error larger, we exploit the balance between the sizes and DFP.

Third, we put additional cost estimations on some algebraic and topological
attacks: Arora-Ge [8], Coded-BKW [27], and Meet-LWE [41] attacks. We note
that the previous parameter sets were all in a secure region against these attacks;
however, for the new parameter sets, we aim to have more security margins. We
put our code for estimating the cost of Meet-LWE attack in the python script.

Based on the above three updates, we changed our recommanded parameter
sets. As q = 1024 is not available anymore for sufficient DFPs in the security
levels 3 and 5, we move to q = 2048 for those levels, resulting in slightly larger
public key and secret key sizes. The ciphertext sizes are decreased by at most
96 bytes.

We also update the reference implementation to have a constant running time
with much faster speed. It is uploaded to our website: kpqc.cryptolab.co.kr/smaug.

1 Introduction

SMAUG is an efficient post-quantum key encapsulation mechanism whose secu-
rity is based on the hardness of the lattice problems. The IND-CPA security
of SMAUG.PKE relies on the hardness of MLWE problem and MLWR problem,
which implies the IND-CCA2 security of SMAUG.KEM.

Our SMAUG.KEM scheme follows the approaches in recent constructions of
post-quantum KEMs such as Lizard [19] and RLizard [39]. SMAUG.KEM bases
its security on the module variant lattice problems: the public key does not leak
the secret key information by the hardness of MLWE problem, and the ciphertext
protects sharing keys based on the hardness of MLWR problem. SMAUG consists
of an underlying public key encryption (PKE) scheme SMAUG.PKE, which turns
into SMAUG.KEM via Fujisaki-Okamoto transform.

1.1 Design rationale

The design rationale of SMAUG aims is to achieve small ciphertext and public key
with low computational cost while maintaining security against various attacks.
In more detail, we target the following practicality and security requirements
considering real applications:

SMAUG iii

Practicality:

– Both the public key and ciphertext, especially the latter, which is transmitted
more frequently, need to be short in order to minimize communication costs.

– As the key exchange protocol is frequently required on various personal de-
vices, a KEM algorithm with low computational costs is more feasible than
a high-cost one.

– A small secret key is desirable in restricted environments such as embedded
or IoT devices since managing the secure zone is crucial to prevent physical
attacks on secret key storage.

Security:

– The shared key should have a large enough entropy, at least ≥ 256 bits, to
prevent Grover’s search [26].

– Security should be concretely guaranteed concerning the attacks on the un-
derlying assumptions, say lattice attacks.

– The low enough decryption failure probability (DFP) is essential to avoid
the attacks boosting the failure and exploiting the decryption failures [33,
20].

– As KEMs are widely used in various devices and systems, countermeasures
against implementation-specific attacks should also be considered. Especially
combined with DFP, using error correction code (ECC) on the message to
reduce decryption failures should be avoided since masking ECC against
side-channel attacks is a very challenging problem.

MLWE and MLWR. SMAUG is constructed on the hardness of MLWE (Module-
Learning with Errors) and MLWR (Module-Learning with Rounding) problems
and follow the key structure of Lizard [19] and Ring-Lizard (RLizard) [39]. Since
LWE problem has been a well-studied problem for the last two decades, there
are many LWE-based schemes (e.g., Frodo [15]). Ring and module LWE problems
are variants defined over structured lattices and regarded as hard as LWE. Many
schemes base their security on RLWE/MLWE (e.g., NewHope [5], Kyber [14] and
Saber [22]) for efficiency reasons. We also chose the module structure, which
enables us to fine-tune security and efficiency in a much more scalable way,
unlike standard and ring versions. Since MLWR problem is regarded as hard as
MLWE problem unless we overuse the same secret to generate the samples [13], we
chose to use MLWR samples for the encryption. By basing the security of encryp-
tion to MLWR, we reduce the ciphertext size by log q/ log p than MLWE instances
so that more efficient encryption and decryption are possible.

Quantum Fujisaki-Okamoto transform. SMAUG consists of key encapsula-
tion mechanism SMAUG.KEM and public key encryption scheme SMAUG.PKE.
On top of the PKE scheme, we construct the KEM scheme using the Fujisaki-
Okamoto (FO) transform [24, 25]. Line of works on FO transforms in the quan-
tum random oracle model [12, 29, 35, 42] make it possible to analyze the quantum

iv Cheon et al.

security, i.e., in the quantum random oracle model (QROM). In particular, we
use the FO transform with implicit rejection and no ciphertext contributions
(FO 6⊥m) following [32].

Sparse secret key and ephemeral key. We design the key generation al-
gorithm based on MLWE problem using sparse secret. Based on the hardness
reduction on the LWEproblem using sparse secret [18], we use sparse ternary
polynomials for the secret key and the ephemeral polynomial vectors. We take
advantage of the sparsity, e.g., significantly smaller secret keys and faster mul-
tiplications. In particular, the small secret makes SMAUG more feasible in IoT
devices having restricted resources.

Choice of moduli. All our moduli are powers of 2. This choice makes SMAUG
enjoy faster encapsulation using simple bit shiftings, easy uniform sampling,
and scailings. The power of 2 moduli makes it hard to apply Number Theoretic
Transform (NTT) on the polynomial multiplications. However, small enough
moduli and polynomial degrees enable SMAUG to achieve faster speed.

Negligible decapsulation failures. Since we base the security on the lattice
problems, noise is inherent. The decryption result of a SMAUG.PKE ciphertext
could be different from the original message but with negligible probability, say
decryption failure probability (DFP). As other LWE/LWR-based KEMs, SMAUG
has the message-independent DFP. We balance the sizes, DFP, and security
of SMAUG by fine-tuning the parameters. Trade-offs between them could give
additional parameter sets for specific purposes.

We give estimated security and sizes for our parameter sets in Table 1. The
complete parameter sets are given in Section 3.3. The security is estimated via
lattice estimator [3] and our code. It is shown in core-SVP hardness. The DFP
is calculated via a python script modified from Lizard and RLizard [31] and is
reported in logarithm base two. The sizes are given in bytes. We include the
security estimator of SMAUG in the reference code package on the team SMAUG
website: kpqc.cryptolab.co.kr/smaug.

1.2 Advantages and limitations

Advantages

– Our scheme relies on the hardness of the lattice problems MLWEand MLWR,
which enable SMAUG to balance its security and efficiency.

– In terms of sizes, SMAUG has smaller ciphertext sizes compared to Kyber or
Saber (tie in level 5).

– In terms of DFP, SMAUG achieves low enough DFP, which are similar to that
of Saber. We do not use error correction code (ECC) to avoid side-channel
attacks targetting decryption failures.

SMAUG v

Parameters sets SMAUG 128 SMAUG 192 SMAUG 256
Target security I III V

n 256 256 256
k 2 3 5

(q, p, p′) (1024, 256, 32) (2048, 256, 256) (2048, 256, 64)

Classical core-SVP hardness 120.0 181.7 264.5
Quantum core-SVP hardness 105.6 160.9 245.2

Decryption failure probability -120 -136 -167

Secret key size 176 236 218
Public key size 672 1088 1792
Ciphertext size 672 1024 1472

Table 1. Security and sizes for our parameter sets.

– Implementation-wise, encapsulation and decapsulation of SMAUG can be
done efficiently. This makes SMAUG much easier to implement and secure
against physical attacks.

– We give the constant-time C reference code, which proves the completeness
and shows the efficiency of SMAUG.

Limitations

– We use MLWR problem, which has been studied shorter than MLWE or
LWE problems; however, with a security reduction to MLWE, it reduces the
sizes and increases the efficiency. MLWE problem with a sparse secret has a
similar issue but has been studied much more and is used in various appli-
cations, e.g., homomorphic encryptions.

– As we use MLWE problem for the secret key security, larger public key sizes
than Saber are inherent. It can be seen as a trade-off between the public key
size versus performance with a smaller secret key size.

2 Preliminaries

2.1 Notation

We denote matrices with bold type and upper case letters (e.g., A) and vectors
with bold type and lower case letters (e.g., b). Unless otherwise stated, the vector
is a column vector.

We define a polynomial ring R = Z[x]/(xn + 1) where n is a power of 2
integers and denote a quotient ring by Rq = Z[x]/(q, xn + 1) = Zq[x]/(xn + 1)
for a positive integer q. For an integer η, we denote the set of polynomials of
degree less than n with coefficients in [−η, η] ∩ Z as Sη. Let S̃η be a set of
polynomials of degree less than n with coefficients in [−η, η) ∩ Z.

vi Cheon et al.

2.2 Lattice assumptions

We first define some well-known lattice assumptions MLWE and MLWR on the
structured Euclidean lattices.

Definition 1 (Decision-MLWEn,q,k,`,η). For positive integers q, k, `, η and the
dimension n of R, we say that the advantage of an adversary A solving the
decision-MLWEn,q,k,`,η problem is

AdvMLWE
n,q,k,`,η(A) =

∣∣Pr
[
b = 1 | A← Rk×`q ; b← Rkq ; b← A(A,b)

]
− Pr

[
b = 1 | A← Rk×`q ; (s, e)← S`η × Skη ; b← A(A,A · s + e)

] ∣∣
Definition 2 (Decision-MLWRn,p,q,k,`,η). For positive integers p, q, k, `, η with
q ≥ p ≥ 2 and the dimension n of R, we say that the advantage of an adversary
A solving the decision-MLWRn,p,q,k,`,η problem is

AdvMLWE
n,p,q,k,`,η(A) =

∣∣Pr
[
b = 1 | A← Rk×`p ; b← Rkq ; b← A(A,b)

]
− Pr

[
b = 1 | A← Rk×`q ; s← S`η; b← A(A, bp/q ·A · se)

] ∣∣
3 Specification

SMAUG consists of the following two schemes:

– SMAUG.PKE is an IND-CPA public-key encryption (PKE) scheme, encrypt-
ing messages of a fixed length 32 bytes,

– SMAUG.KEM is an IND-CCA2-secure key encapsulation mechanism (KEM)
scheme, constructed using Fujisaki-Okamoto (FO) transform on SMAUG.PKE.

We first introduce SMAUG.PKE in Section 3.1, then construct SMAUG.KEM
in Section 3.2. The implementation detqils are given in Section 3.4.

3.1 Specification of SMAUG.PKE

We now describe the public key encryption scheme SMAUG.PKE in Algorithms 1, 2,
and 3 with the following building blocks:

– Hash function H for generating the seeds seedA and seedsk,
– Uniform random matrix sampler expandA for deriving A from seedA,
– Discrete Gaussian sampler dGaussianσ for deriving a MLWEerror e with stan-

dard deviation σ from seedsk,
– Hamming weight sampler HWTh for deriving a sparse ternary s (resp. r)

with hamming weight h = hs (resp. h = hr) from seedsk (resp. seedr).

SMAUG vii

Algorithm 1 SMAUG.PKE.KeyGen: key generation

KeyGen(1λ):

1: seed← {0, 1}256
2: (seedA, seedsk)← H(seed)
3: A← expandA(seedA) ∈ Rk×kq

4: s← HWThs(seedsk) ∈ Skη
5: e← dGaussianσ(seedsk) ∈ Rk
6: b = −A> · s + e ∈ Rkq
7: return pk = (seedA,b), sk = s

Algorithm 2 SMAUG.PKE.Enc: encryption

Enc(pk, µ; seedr): . pk = (seedA,b), µ ∈ Rt
1: A = expandA(seedA)
2: if seedr is not given then seedr ← {0, 1}256

3: r← HWThr (seedr) ∈ Skη
4: c1 = bp/q ·A · re ∈ Rkp
5: c2 = bp′/q · 〈b, r〉+ p′/t · µe ∈ Rp′
6: return ct = (c1, c2)

Algorithm 3 SMAUG.PKE.Dec: decryption

Dec(sk, c): . sk = s, c = (c1, c2)

1: µ′ = bt/p · 〈c1, s〉+ t/p′ · c2e ∈ Rt
2: return µ′

3.2 Specification of SMAUG.KEM

We now introduce the key encapsulation mechanism SMAUG.KEM in Algo-
rithms 4, 5, and 6. SMAUG.KEM is designed following the Fujisaki-Okamoto
transform with implicit rejection using the non-perfectly correct PKE, whose
security in the QROM is well-studied in [30, 32, 11]. It is constructed using
SMAUG.PKE as an underlying IND-CPA secure PKE with the following building
blocks, which can be implemented with symmetric primitives:

– hash function H for hashing a public key,
– hash function G for deriving a sharing key and a seed.

The Fujisaki-Okamoto transform in SMAUG has some differences from FO 6⊥m
transform in [32], in its encapsulation and decapsulation methods. Encap of
SMAUG uses the hashed public key when generating the sharing key and the
randomness. This prevents some multi-target attacks on SMAUG. In Decap, the
sharing key is alternatively re-generated if ct 6= ct′ holds for efficiency, and side-
channel attacks (SCA) may leak the failure information. However, security can
rely on the explicit FO transform FO⊥m even in the case of rejection leakages,
which is treated in [34] with a competitive bound.

We remark that the randomly chosen message µ should be hashed addition-
ally in the environments using a non-cryptographic system RNG. Using a true

viii Cheon et al.

Algorithm 4 SMAUG.KEM.KeyGen: key generation

KeyGen(1λ):

1: (pk, sk′)← SMAUG.PKE.KeyGen(1λ)
2: d← {0, 1}256
3: return pk, sk = (sk′, d)

Algorithm 5 SMAUG.KEM.Encap: encapsulation

Encap(pk): . pk = (seedA,b)

1: µ← {0, 1}256
2: (K, seed)← G(µ,H(pk))
3: ct← SMAUG.PKE.Enc(pk, µ; seed)
4: return ct, K

Algorithm 6 SMAUG.KEM.Decap: decapsulation

Decap(sk, ct): . sk = (sk′, d)

1: µ′ = SMAUG.PKE.Dec(sk′, ct)
2: (K′, seed′)← G(µ,H(pk))
3: ct′ = SMAUG.PKE.Enc (pk, µ′; seed′)
4: if ct 6= ct′ then
5: (K′, ·)← G(d,H(ct))

6: return K′

random number generator (TRNG) is recommended for sampling the message
µ.

3.3 Parameter sets

SMAUG is parameterized by integers n, k, q, p, p′, t, hs and hr, and the standard
deviation σ for the discrete Gaussian error in the key. We use the same ring
dimension n = 256 and the message modulus t = 2 for every parameter set.

3.4 Implementation details

Coefficient in MSB. For x ∈ Zq, rather than storing itself, we store the value
(x � 16 LOG Q) in uint16 t, i.e. x is stored in log q most significant bits of
uint16 t. In other words, we identify Zq with the subspace of 16-bit data space
of which the components are all zero except the most significant log q bits. If
vectors or matrices (resp. polynomials) are defined over Zq, then the data storage
strategy is applied to each component (resp. coefficient).

Sparse polynomial structure. As mentioned above, sparse polynomial space
is Sη which means that coefficient belongs to {−1, 0, 1}. In addition, our sparse
polynomial s(x) and r(x) have hs and hr of non-zero coefficients, respectively,

SMAUG ix

Parameters sets SMAUG-128 SMAUG-192 SMAUG-256
Security level I III V

n 256 256 256
k 2 3 5
q 1024 2048 2048
p 256 256 256
p′ 32 256 64
t 2 2 2
hs 140 198 176
hr 132 151 160
σ 1.0625 1.453713 1.0625

Classical core-SVP 120.0 181.7 264.5
Quantum core-SVP 105.6 160.9 245.2

DFP -119.6 -136.1 -167.2

Secret key 176 236 218
Public key 672 1,088 1,792
Ciphertext 672 1,024 1,472

Table 2. The NIST security level, selected parameters, classical and quantum core-
SVP hardness, decryption failure probability (in log2), and sizes (in bytes) of SMAUG.

since they are sampled from HWT. It is wasting memory to store polynomials
itself. Hence, we store degrees of non-zero coefficient. The degrees of coefficient
1 are stacked from the beginning of the array, and those of coefficient -1 are
stacked backward from the end of the array. The smallest index indicating the
degree of coefficients -1 is denoted by neg start. Converting to degree arrays
from sparse polynomials is done by convToIdx.

Packing and Unpacking. Packing means conversion to uint8 t array from
polynomial inRq andRp, or the structure of sparse polynomials described above.
Assume that coefficients of a polynomial in Rq and Rp are shifted to the right
by 16 LOG Q and 16 LOG P, respectively.

Rq to bytes is the function to pack a polynomial in Rq to uint8 t array. We
pack four coefficients to 5 uint8 t elements of the array since q is 1024. First,
pack eight least significant bits of each coefficient to the corresponding uint8 t

elements, then the left 2 bits are stored in the fifth from last uint8 t element.
Rp to bytes is the function to pack a polynomial in Rp to uint8 t array. Un-

likeRq, we pack each coefficient to uint8 t element directly as p is 256. However,
we cannot use memcpy on the polynomial since the data type of polynomial is
uint16 t.

Sx to bytes is the function to pack a degree array of spare polynomial de-
scribed in 3.6.2 to uint8 t array. We pack each degree to uint8 t element di-
rectly as our degree n is 256.

Unpacking is to recover a polynomial or degree array from packed uint8 t

array.

x Cheon et al.

Sampling algorithms. We use the following algorithms for sampling the ran-
domnesses used in SMAUG:

– expandA for sampling a uniform random matrix A,
– HWTh for sampling sparse secrets, i.e., the secret key s and the ephimeral

secret r with fixed hamming weights hs and hr,
– dGaussianσ for sampling a discrete Gaussian error with standard deviation
σ for MLWE sample.

We give the detailed algorithms of the sampling algorithms below.

Uniform random matrix sampler, expandA. We adopt the gen algorithm in
Saber [44] for our uniform random matrix sampler expandA, given in Figure 7.
This pseudorandom generator samples a public matrix A from uniformly random
distribution over Rk×kq .

Algorithm 7 expandA: uniform random matrix sampler

expandA(seed): . seed ∈ {0, 1}256

1: buf← XOF(seed)
2: for i from 0 to k − 1 do
3: A[i] = bytes to Rq(buf + polybytes · i) . Convert to ring elements

4: return A

Hamming weight sampler, HWTh. The hamming weight sampler, HWTh in Fig-
ure 8, is adapted from the SampleInBall algorithm in Dilithium [21], having a
secret-independent running time. It samples a ternary polynomial vector having
a hamming weight of h.

Algorithm 8 HWTh: hamming weight sampler

HWTh(seed): . seed ∈ {0, 1}256

1: count = 0
2: buf ← XOF(seed)
3: for i from n− h to n− 1 do
4: repeat
5: degree = buf[idx] ∧ mask
6: until degree < i
7: res[i] = res[degree]
8: res[degree] = ((buf[idx] � 14) ∧ 0x02)− 1

9: return convToIdx(s) . Storing the indexes

SMAUG xi

Discrete Gaussian sampler, dGaussian. Karmakar et al. [36] suggested a constant-
time discrete Gaussian sampling using the Knuth-Yao algorithm [38] and logic
minimization. Motivated by this, we deployed the Quine-McCluskey method4

and applied logic minimization technique on a cumulative distribution table
(CDT). As a result, even though our dGaussian is constructed upon CDT tables,
it is expressed with minimized bit operations and is constant-time. It is easily
parallelizable and also suitable for IoT devices as its memory requirment is low.
dGaussian samplers with σ = 1.0625 and σ = 1.453713 are given in Algorithm 9
and 10, respectively.

Algorithm 9 dGaussianσ=1.0625: Discrete Gaussian sampler, σ = 1.0625

dGaussianσ(x):

Require: x = x0x1x2x3x4x5x6x7x8x9 ∈ {0, 1}10
1: s = s1s0 = 00 ∈ {0, 1}2
2: s0 = x0x1x2x3x4x5x7x8
3: s0 += (x0x3x4x5x6x8) + (x1x3x4x5x6x8) + (x2x3x4x5x6x8)
4: s0 += (x2x3x6x8) + (x1x3x6x8)
5: s0 += (x6x7x8) + (x5x6x8) + (x4x6x8) + (x7x8)
6: s1 = (x1x2x4x5x7x8) + (x3x4x5x7x8) + (x6x7x8)
7: s = (−1)x9 · s . · is the arithmetic multiplication
8: return s

Algorithm 10 dGaussianσ=1.453713: Discrete Gaussian sampler, σ = 1.453713

dGaussianσ(x):

Require: x = x0x1x2x3x4x5x6x7x8x9x10 ∈ {0, 1}11
1: s = s2s1s0 = 000 ∈ {0, 1}3
2: s0 = (x0x1x2x3x5x7x8) + (x1x2x3x5x6x7x9) + (x1x2x3x6x7x8)
3: s0 += (x1x2x3x5x8x9) + (x0x2x3x5x8x9)
4: s0 += (x4x5x6x7x9) + (x3x4x8x9) + (x5x6x7x8) + (x4x6x7x8) + (x4x5x8x9)
5: s0 += (x5x8x9) + (x6x8x9) + (x7x8x9) + (x7x8x9) + (x6x8x9)
6: s1 = (x0x1x4x5x6x7x9) + (x2x4x5x6x7x9) + (x3x4x5x6x7x9) + (x5x6x7x8x9)
7: s1 += (x1x2x3x8x9) + (x7x8x9) + (x6x8x9) + (x5x8x9) + (x4x8x9)
8: s2 = (x1x4x5x6x7x8x9) + (x2x4x5x6x7x8x9) + (x3x4x5x6x7x8x9)
9: s = (−1)x10 · s . · is the arithmetic multiplication

10: return s

Polynomial multiplication.

SMAUG uses the power-of-two moduli to ease the correct scaling and round-
ings. However, this makes the polynomial multiplications hard to benefit from

4 We use the python package, from https://github.com/dreylago/logicmin.

xii Cheon et al.

Number Theoretic Transform (NTT). As a result, we propose a new polynomial
multiplication benefit from the sparsity, adapted from [1, 39]. Our new multipli-
cation, given in Figure 11, is constant-time and is faster than the original ones.
Our secret storing method is similar to that of RLizard. The secret key stores
only the degrees of non-zero coefficients, and the degrees are directly used in the
polynomial multiplications.

Algorithm 11 poly mult add: polynomial multiplication using sparsity

poly mult add(a, b, neg start): . a ∈ Rq, b ∈ Sη
1: for i from 0 to neg start - 1 do
2: degree = b[i]
3: for j from 0 to n do
4: a[degree + j] = a[degree + j] + a[j];

5: for i from neg start to len(b) do
6: degree = b[i]
7: for j from 0 to n do
8: a[degree + j] = a[degree + j]− a[j];

9: for j from 0 to n do
10: a[j] = a[j]− a[n+ j];

11: return a

4 Performance analysis

In this section, we report the performance results of C reference implementation.

4.1 Description of platform

All benchmarks are obtained on one core of an Intel(R) Core(TM) i7-10700K
CPU processor with clock speed 3.80GHz The benchmarking machine has 64
GB of RAM and runs Debian GNU/Linux with Linux kernel version 5.4.0. The
implementation is compiled with gcc version 9.4.0, and the compiler flags as
indicated in the CMakeLists included in the submission package.

4.2 Performance of reference implementation

We instantiate the hash functions G,H and the extendable function XOF with
the following symmetric primitives:

– G is instantiated with SHAKE-256,
– H is instantiated with SHA3-256,
– XOF is instantiated with SHAKE-128.

SMAUG xiii

Table 3 reports the performance results of SMAUG, based on the constant-
time implementation we provide on our wecite: kpqc.cryptolab.co.kr.

All cycle counts are reported after 10,000 executions. The implementation is
not optimized for memory usage, but generally, SMAUG has only modest memory
requirements. This means that, in particular, our implementations do not need
to allocate any memory on the heap.

Schemes KeyGen Encap Decap

SMAUG-128
med 77,220 77,370 92,916
ave 77,940 77,063 93,046

SMAUG-192
med 154,862 136,616 163,354
ave 155,311 136,702 164,782

SMAUG-256
med 266,704 270,123 305,452
ave 270,123 270,672 304,292
ave 262,580 240,545 275,035

Table 3. Median and average cycle counts of 1000 executions for SMAUG. Cycle counts
are obtained on one core of an Intel Core i7-10700k, with TurboBoost and hyperthread-
ing disabled.

5 Security

Indistinguishability against adaptive Chosen Ciphertext Attacks (IND-CCA2) is
regarded as a strong security notion for the key encapsulation mechanisms. In
the IND-CCA2 security game, the adversary can access the public key and the
decapsulation oracle with adaptively chosen ciphertexts. That is, it can query a
sequence of ciphertexts ctxti and receives KEM.Decap(sk, ctxti), adaptively. At
some point during the run-time, the adversary may get a pair (K, ctxt), where
K be either a session key corresponds to a ciphertext ctxt or a random key (with
ctxt output from KEM.Encap). In the end, the adversary outputs its guess on
whether the pair is correct. It wins if the guess is correct.

Our key encapsulation mechanism SMAUG.CCAKEM has IND-CCA2 secu-
rity. Since our KEM is constructed based on the Fujisaki-Okamoto transform [24,
25] upon a public key encryption scheme SMAUG.CPAPKE, we first see the se-
curity notion for the underlying public key encryption scheme. If Indistinguisha-
bility against Chosen Plaintext Attacks (IND-CPA) security of the underlying
PKE is guaranteed, then the IND-CCA2 security of our SMAUG.CCAKEM is also
guaranteed due to FO transform.

IND-CPA is a security notion of public key encryption schemes. In the IND-
CPA game, the adversary has access to the public key and the encryption oracle.
At some point during the run-time, the adversary queries two messages to the
challenger and receives a ciphertext of one of the messages. It wins if it correctly
guesses which message is used for the encryption.

xiv Cheon et al.

5.1 Security definition

Definition 3 (Indistinguishablity under Chosen Plaintext Attacks (IND-
CPA)). For a (randomized) public key encryption scheme PKE = (KeyGen, Enc,
Dec), an IND-CPA adversary A, with a sub-algorithm Asub, has access to the
public key pk (as a result, it has accesses to the encryption oracle Enc(pk, ·)).
Then the advantage of the IND-CPA adversary A is

AdvIND−CPAPKE (A) =∣∣∣Pr

[
b = b′

(sk, pk)← KeyGen; (M0,M1)← Asub(pk);
b← {0, 1}; b′ ← A(pk,Enc(pk,Mb))

]
− 1

2

∣∣∣.
Definition 4 (Indistinguishablity under adaptive Chosen Ciphertext
Attacks (IND-CCA2)). For a (randomized) key encapsulation mechanism
KEM = (KeyGen, Encap, Decap), an IND-CCA2 adversary A has accesses to the
public key pk and the decapsulation oracle Decap(sk, ·). It can adaptively query
ciphertexts to the oracle. Then the advantage of the IND-CCA2 adversary A is

AdvIND−CCA2KEM (A) =∣∣∣Pr

[
b = b′

(sk, pk)← KeyGen; (K0, ct)← Encap(pk);
K1 ← K; b← {0, 1}; b′ ← A(pk, (Kb, ct))

]
− 1

2

∣∣∣.
The original FO transforms FO⊥m constructs a KEM from a deterministic

PKE, i.e., a de-randomized version. The encapsulation randomly samples a mes-
sage m and uses the message’s hash value G(m) as randomness for encryption,
generating a ciphertext. The sharing key K = H(m) is generated by hashing
(with different hash functions) the message. In the decapsulation, it first de-
crypts the ciphertext and recovers the message, m′. If it fails to decrypt or fails
to“re-encrypt” the ciphertext equals the received one, and it outputs ⊥. The
sharing key can be generated by hashing the recovered message.

In the quantum setting, however, the FO transform with “implicit rejection”
(FO 6⊥m) is proven more secure than the original version, which implicitly outputs
a pseudo-random sharing key if the re-encryption fails.

We recap the QROM proof of Hövelmanns et al. [11] allowing the KEMs
constructed over non-perfect PKEs to have IND-CCA security:

Theorem 1 ([11], Theorem 1 & 2). Let G and H be quantum-accessible
random oracles, and the deterministic PKE is ε-injective. Then the advantage
of IND-CCA attacker A with at most QDec decryption queries and QG and QH
hash queries at depth at most dG and dH , respectively, is

AdvIND−CCAKEM (A) ≤ 2

√
(dG + 2)

(
AdvIND−CPAPKE (B1) + 8(QG + 1)/|M|

)
+AdvDF

PKE(B2) + 4
√
dHQ/|M|+ ε,

where B1 is an IND-CPA adversary on PKE and B2 is an adversary against
finding a decryption failing ciphertext.

SMAUG xv

5.2 Security proof

We now prove the completeness of SMAUG.PKE.

Theorem 2 (Completeness of SMAUG.PKE). Let A, b, s, e, and r are de-
fined as in Algorithms 1, 2, and 3. Let the moduli t, p, p′, and q satisfy t | p | q
and t | p′ | q. Let e1 ∈ RkQ and e2 ∈ RQ be the rounding errors introduced from the

scalings and roundings of A · r and bT · r. That is, e1 = q
p (bpq ·A · re mod p)−

(A · r mod q) and e2 = q
p′ (b

p′

q · 〈b, r〉e mod p′)− (〈b, r〉 mod q). Let

δ = Pr
[
‖〈e, r〉+ 〈e1, s〉+ e2‖∞ >

q

2t

]
,

where the probability is taken over the randomness of the encryption. Then
SMAUG.PKE in Algorithms 1, 2, and 3 is (1 − δ)-correct. That is, for every
message µ and every key-pair (pk, sk) returned by KeyGen(1λ), the decryption
fails with a probability less than δ.

Proof. By the definition of e1 and e2, it holds that

c1 =
p

q
· (A · r + e1) mod p and c2 =

p′

q
· (〈b, r〉+ e2) +

p′

t
· µ mod p′,

where the coefficients of e1 and e2 are in Z ∩ (− q
2p ,

q
2p] and Z ∩ (− q

2p′ ,
q
2p′],

respectively. Thus, the decryption of ciphertext with respect to the message µ
and the randomness r can be written as⌊
t

p
· 〈c1, s〉+

t

p′
· c2
⌉

mod t =

⌊
t

q
(〈A · r, s〉+ 〈e1, s〉+ 〈b, r〉+ e2) + µ

⌉
mod t

=

⌊
t

q

(
〈A> · s + b, r〉+ 〈e1, s〉+ e2

)
+ µ

⌉
mod t

= µ+

⌊
t

q
(〈e, r〉+ 〈e1, s〉+ e2)

⌉
mod t.

Thus, the decryption result is equal to µ if and only if every coefficient of 〈e, r〉+
〈e1, s〉+ e2 is in the interval [− q

2t ,
q
2t). This concludes the proof of completeness

of SMAUG.PKE. ut

We then give the IND-CPA security of SMAUG.PKE.

Theorem 3 (IND-CPA security of SMAUG.PKE). Assuming pseudoran-
domness of the underlying sampling algorithms, the IND-CPA security of SMAUG.
PKE can be tightly reduced to the decisional MLWE and MLWR problems. Specif-
ically, for any IND-CPA-adversary A of SMAUG.PKE, there exist adversaries
B0, B1, B2, and B3 attacking the pseudorandomness of H and the sampling al-
gorithms, MLWE, and MLWR problems, such that,

AdvIND−CPASMAUG.PKE(A) ≤ AdvPRH (B0) + AdvPRexpandA,HWT,dGaussian(B1)

+ AdvMLWE
n,q,k,k,HWThs ,dGaussianσ

(B2) + AdvMLWR
n,p,q,k+1,k,HWThr

(B3).

xvi Cheon et al.

Proof. The proof proceeds by a sequence of hybrid games from G0 to G4 defined
as follows:

– G0: the genuine IND-CPA game,

– G1: identical to G0, except that the public key is changed into (A,b),

– G2: identical to G1, except that the sampling algorithms are changed into
truly random samplings,

– G3: identical to G2, except that b is randomly chosen from Rkq ,

– G4: identical to G3, except that the ciphertext is randomly choosen from
Rkp ×Rp′ . As a result, the public key and the ciphertexts are truly random.

We denote the advantage of the adversary on each game Gi as Advi, where
Adv0 = AdvIND−CPASMAUG.PKE(A) and Adv4 = 0. Then, it holds that

|Adv0 − Adv1| ≤ AdvPRH (B0),

for some adversary B0 against the pseudorandomness of the hash function. Since
the view of the transcripts in the hybrid games G1 and G2 are different only in
the randomness sampling, it holds that

|Adv1 − Adv2| ≤ AdvPRexpandA,HWT, dGaussian(B1),

for some adversary, B1 attacking the pseudorandomness of at least one of the
samplers. The difference in the games G2 and G3 is that the polynomial vec-
tor b is sampled as a part of an MLWE sample in G2 or randomly in G3.
Thus, the difference between the advantages Adv2 and Adv3 can be bounded
by AdvMLWE

n,q,k,k,HWThs ,dGaussianσ
(B2), where B2 is an adversary against decisional

MLWE problem, distinguishing the MLWE samples from random. Lastly, the
only difference in the hybrids G3 and G4 is that the ciphertexts are generated
in different ways: random over Rkp ×Rp′ versus (c1, bp′/p · c2e), where[

c1
c2

]
=

⌊
p

q
·
(

A
b>

)
· r
⌉

+
p

t
·
[

0
µ

]
.

If A distinguishes the two ciphertexts, then we can construct an adversary B3
distinguishing the MLWR sample from random, as follows: for given a sample

(A,b) ∈ R(k+1)×k
q × Rk+1

p , B3 rewrites b as (b1, b2) ∈ Rkp × Rp, computes
(b1, bp′/p · b2e), and use A to decide the ciphertext type, which will be the output
of B3. Thus, it holds that

|Adv3 − Adv4| ≤ AdvMLWR
n,p,q,k+1,k,HWThr

(B3).

This concludes the proof. ut

We now show the completeness of SMAUG.KEM based on the completeness
of the underlying public key encryption scheme, SMAUG.PKE.

SMAUG xvii

Theorem 4 (Completeness of SMAUG.KEM). We borrow the notations and
assumptions from Theorem 2 and Algorithms 4, 5, and 6. Then SMAUG.KEM is
also (1−δ)-correct. That is, for every key-pair (pk, sk) generated by KeyGen(1λ),
the shared keys K and K ′ are identical with probability larger than 1 − δ, if
SMAUG.PKE is (1− δ)-correct.

Proof. The shared keys K and K ′ are identical if the decryption succeeds. As-
suming the pseudorandomness of the hash function G, the probability of being
K 6= K ′ can be bounded by the decryption failure probability of SMAUG.PKE.
The completeness of SMAUG.PKE (Theorem 2) concludes the proof. ut

The IND-CPA security of SMAUG.PKE and Theorem 1 implies the IND-CCA
security of SMAUG KEM scheme in the QROM.

5.3 Security strength categories

We target the security of our SMAUG.KEM to the NIST PQC security levels 1,
3, and 5, which is at least as secure as Kyber and Saber. Targeting such security
levels, we use the Core-SVP methodology, a conservative security estimation
method in lattice-based cryptography (see section 5.4), and give the following
parameter sets correspond to the security levels. We also give the security esti-
mated by using another methodology, MATZOV [40], which reports much higher
security.

Parameters sets SMAUG 128 SMAUG 192 SMAUG 256
Target security I III V

Classical core-SVP 120.0 181.7 264.5
Quantum core-SVP 105.6 160.9 245.2

MATZOV 140.9 199.1 274.6

Table 4. Core-SVP hardness for security levels I, III and V.

5.4 Cost of known attacks

For the concrete security analysis, we list the best-known lattice attacks and the
required cost upon attacking our key encapsulation mechanism SMAUG.KEM.
All the best-known attacks are essentially finding a nonzero short vector in the
Euclidean lattices, using the Block–Korkine–Zolotarev (BKZ) lattice reduction
algorithm [17, 28, 43].

The BKZ algorithm is a lattice basis reduction algorithm that uses the Short-
est Vector Problem (SVP) solver repeatedly to small-dimensional sub-lattices,
which we call a block of size β, rather than in the entire high-dimensional lat-
tice. β-BKZ is the BKZ algorithm using SVP solver in the block size β, and the

xviii Cheon et al.

parameter b determines the quality of the resulting basis and the time complex-
ity. The time complexity of the β-BKZ algorithm is the same as the SVP solver
for dimension β with a polynomial factor. Indeed, there is a quality/time trade-
off: If β gets larger, better quality will be guaranteed, and the time complexity
for the SVP solver will exponentially increase. Hence the time complexity differs
depending on the SVP solver used. The most efficient SVP algorithm is using the
sieving method proposed by Becker et al. [10] which takes time ≈ 20.292β+o(β)

with the classical solver. The fastest known quantum variant was recently pro-
posed by Chailloux and Loyer in [16] and takes time ≈ 20.257β+o(β).

Based on the BKZ algorithm, we will follow the Core-SVP methodology
as in [5] and in the subsequent lattice-based post-quantum schemes [4, 14, 22,
23], which is regarded as a conservative way to set the security parameters. We
ignore the polynomial factors and the o(β) terms in the exponent for the time
complexity of the BKZ algorithm.

We give the best-known attacks for MLWE, namely primal attack, dual at-
tack, and their hybrid variants with the Core-SVP hardness of the attacks. We
remark that any MLWEn,q,k,`,η instance can be viewed as an LWEq,nk,n`,η in-
stance. Even though MLWE problem has some extra algebraic structure com-
pared to the LWE problem, we do not currently have any attack advantaged by
this structure. Hence we analyze the hardness of the MLWE problem over the
structured lattices as the hardness of the corresponding LWE problem over the
unstructured lattices.

However, when dealing with the hardness of the MLWR problem, we treat
it as an MLWE problem since there are no known attacks that use the de-
terministic error term in MLWR structure. Further more, the reduction from
the (M)LWE problem to the (M)LWR problem were also given by Banerjee et
al. [9] and the improvements [6, 7, 13]. Basically, an MLWR sample given by
(A, bp/q ·A·se mod p) for uniformly chosen A← Rkq and s← R`p can be rewrit-
ten as (A, p/q ·(A ·s mod q)+e mod p). This sample can be transformed to an
MLWE sample over Rq by multiplying q/p as (A,b = A · s+ q/p ·e mod q). We
assume that the error term in the resulting MLWE sample is a random variable,
uniform in the interval (−q/2p, q/2p] so that we can estimate the hardness of
the MLWR problem as the hardness of the corresponding MLWE problem.

We summarize the cost of the known attacks in Table 5. The security is
estimated via lattice estimator [3] and is represented as core-SVP hardness. The
python script used for this estimation is attached in the submission files with
this document. We assumed that the number of 1 is equal to the number of
−1 for simplicity. The lowest value, which becomes the core-SVP hardness of
each scheme, is indicated with bold type. We note that hybrid attacks require
significant memory, for e.g., at least 2171.4 bits for SMAUG 192 dual hybrid attack
or 2233.2 bits for SMAUG 256 dual hybrid attack.

5.4.1 Description of Primal attack. Given an LWE instance (A,b) ∈
Zk×`q × Zkq , we first define a lattice Λm = {v ∈ Z`+m+1 : Bv = 0 mod q},
where B =

(
A[m] | Idm | b[m]

)
∈ Zm×(`+m+1)

q , where A[m] is the uppermost

SMAUG xix

Parameters sets SMAUG 128 SMAUG 192 SMAUG 256
Target security I III V

Classical core-SVP hardness for MLWE

Primal attack 120.0 182.8 300.5
Primal attack (BDD) 120.9 184.4 302.4

Primal attack (Hybrid) 121.3 185.0 297.2
Dual attack 125.9 190.4 311.0

Dual attack (Hybrid) 122.7 181.7 264.5

Classical core-SVP hardness for MLWR

Primal attack 120.0 188.9 322.7
Primal attack (BDD) 121.5 191.9 329.5

Primal attack (Hybrid) 121.5 193.0 309.4
Dual attack 125.9 197.1 334.9

Dual attack (Hybrid) 122.1 181.8 274.3

Quantum core-SVP hardness for MLWE

Primal attack 105.6 160.9 264.5
Primal attack (BDD) 106.5 162.4 265.9

Primal attack (Hybrid) 106.9 162.9 267.0
Dual attack 110.8 167.6 273.7

Dual attack (Hybrid) 111.5 165.5 245.2

Quantum core-SVP hardness for MLWR

Primal attack 105.6 166.3 284.0
Primal attack (BDD) 107.0 168.9 290.0

Primal attack (Hybrid) 107.0 170.0 283.1
Dual attack 110.8 173.5 294.8

Dual attack (Hybrid) 111.3 167.1 255.8

Table 5. Cost of known lattice reduction attacks. The security is represented as core-
SVP hardness.

m× ` sub-matrix of A and b[m] is the uppermost length m sub-vector of b for
m ≤ k. Then, a short non-zero vector in the lattice Λm can be transformed
to a short non-trivial solution to the LWE equation. Primal attack solves the
SVP problem in the lattice Λm using β-BKZ, increasing the block size β for all
possible m.

5.4.2 Description of Dual attack. Given an LWE instance (A,b) ∈ Zk×`q ×
Zkq , we first define a lattice Λ′m = {(u,v) ∈ Zm × Z` : A>[m]u + v = 0 mod q},
where A[m] is the uppermost m× ` sub-matrix of A for m ≤ k. Then, again, the
short non-zero vector in the lattice Λ′m induces a short non-trivial solution to
the LWE problem. Dual attack solves the SVP problem in the lattice Λ′m using
β-BKZ, increasing the block size β, for all possible m.

5.4.3 Description of the hybrid variants. For both Primal and Dual
attacks, some variants combine the attack with the combinatorial attacks, in-
cluding the meet-in-the-middle (MITM) attack, which we call hybrid attacks.

xx Cheon et al.

These variants are usually slower than the original attacks. However, the attacks
may benefit from the particular choice of the small or sparse secret used in the
LWE problem. By exploiting the secret as a preprocessing or using the MITM
approach to guess the part of the sparse secret, the attacks may be improved
compared to the original attacks.

Since hybrid attacks are combinations of lattice reduction attacks and combi-
natorial/MITM attacks, it is not natural to apply the Core-SVP method directly
to the hybrid attacks, focusing only on the BKZ block-size since it may ignore
part and parcel of the attack. We, instead, näıvely extend the Core-SVP method-
ology to the case of the hybrid attacks by using the Core-SVP methodology on
the lattice reduction parts and then dividing by the probability of success of
the combinatorial/meet-in-the-middle attack parts. We will estimate the cost
by joining the information theory and Core-SVP methodology. That is, we find
the best block-size β and calculate c · β − log2(Pr[guess is correct]) where c is
either cC = 0.292 or cQ = 0.257. Since the success probability of the guessing is
independent of the BKZ algorithm, this can be viewed as a näıve extension of
the Core-SVP method to the hybrid attacks.

5.4.4 Beyond Core-SVP methodology. We also analyze the cost of the
attacks other than the Primal and Dual attacks variants. Algebraic attacks like
Arora-Ge attack and the variants [8, 2] using Gröbener’s basis or Coded-BKW
attacks [37, 27] are also considered, using the lattice estimator [3]. Still, they
have much higher attack costs than the previously introduced attacks, with
significantly higher memory requirements.

Recently, May [41] proposed a combinatorial attack called Meet-LWE, an
improved version of Odlyzko’s Meet-in-the-Middle approach. It brings down
the asymptotic attack complexity from S0.5 to S0.25, which reaches to S0.3 in
some lattice-based schemes with non-asymptotic instantiations. We note that
the asymptotic complexities are far from the estimated attack costs in SMAUG
parameter sets.

Parameters sets SMAUG 128 SMAUG 192 SMAUG 256
Target security I III V

Classical core-SVP 120.0 181.7 264.5

Algebraic & Combinatorial attacks

Arora-Ge
time 741.3 983.4 -

(mem) (598.0) (636.5) -

BKW
time 144.7 202.0 274.6

(mem) (133.7) (190.7) (256.9)

Meet-LWE
time 164.3 213.8 283.2

(mem) (143.7) (192.4) (254.7)

Table 6. Attack costs beyond Core-SVP.

SMAUG xxi

We summarize the costs of the algebraic and combinatorial attacks in Ta-
ble 6. Attack costs for Arora-Ge and Coded-BKW are estimated with lattice
estimator [3]. The estimated cost of Arora-Ge attack on SMAUG 256 is not de-
termined by lattice-estimator, outputting∞, which is at least a thousand bits of
security. The costs for the Meet-LWE attack are estimated with a python script5

based on May’s analysis [41], best among Rep-1 and Rep-2.
Note that Rep-1 and Rep-2 always outperform Rep-0. It assumes the num-

ber of 1 is equal to the number of −1. We note that this is also assumed when
estimating core-SVP hardness, which leads to several bits lower security. The
time and memory costs are given in the base two logarithms, i.e., bit-cost; how-
ever, the units are not specified. We expect that the time and memory units are
for generating and storing one element in a list. We just followed May’s paper.
For instance, Meet-LWE attack for SMAUG 128 requires 2164.3 runs and 2143.7

consumption of unit operation and memory, respectively.
We remark that, as in all the existing security estimate methods, includ-

ing core-SVP hardness, there are gaps between the actual attack costs and the
estimated costs, given in the tables.

6 Summary and future works

Our KEM scheme takes advantage of recent approaches in lattice-based cryp-
tography. By bringing the MLWE-based public key generation and the sparse
secret to Saber, SMAUG exploits the remaining room for efficiency. SMAUG has
the shortest6 ciphertext among the LWE/LWR-based KEM schemes while main-
taining the high security and even better performance.

Future works and directions. First, we will keep studying the hardness of sparse
secret LWEand LWR problems. These variants are already studied for a while,
but more effort is required for long-term quantum security. Secondly, we will
provide an optimized implementation of SMAUG in various devices, as SMAUG
is an attractive candidate for resource-restricted devices. Lastly, we will include
analysis against side-channel attacks and provide secure implementations.

References

1. Akleylek, S., Alkım, E., Tok, Z.Y.: Sparse polynomial multiplication for lattice-
based cryptography with small complexity. The Journal of Supercomputing 72,
438–450 (2016)

2. Albrecht, M.R., Cid, C., Faugère, J.C., Perret, L.: Algebraic algo-
rithms for lwe. Cryptology ePrint Archive, Paper 2014/1018 (2014),
https://eprint.iacr.org/2014/1018

5 The script can be found on the team SMAUG website: http://kpqc.cryptolab.co.kr/
6 Among the recent KEMs with comparable security, DFP, and SCA-resistance. In

particular, we do consider KEMs using ECC on messages to reduce the DFP.

xxii Cheon et al.

3. Albrecht, M.R., Player, R., Scott, S.: On the concrete hardness of learning with
errors. Journal of Mathematical Cryptology 9(3), 169–203 (2015)

4. Alkim, E., Barreto, P.S.L.M., Bindel, N., Kramer, J., Longa, P., Ricardini, J.E.:
The lattice-based digital signature scheme qtesla. Cryptology ePrint Archive, Paper
2019/085 (2019), https://eprint.iacr.org/2019/085

5. Alkim, E., Ducas, L., Pöppelmann, T., Schwabe, P.: Post-quantum key exchange
- A new hope. pp. 327–343 (2016)

6. Alperin-Sheriff, J., Apon, D.: Dimension-preserving reductions from
lwe to lwr. Cryptology ePrint Archive, Paper 2016/589 (2016),
https://eprint.iacr.org/2016/589, https://eprint.iacr.org/2016/589

7. Alwen, J., Krenn, S., Pietrzak, K., Wichs, D.: Learning with rounding, revisited.
In: Canetti, R., Garay, J.A. (eds.) Advances in Cryptology – CRYPTO 2013. pp.
57–74. Springer Berlin Heidelberg, Berlin, Heidelberg (2013)

8. Arora, S., Ge, R.: New algorithms for learning in presence of errors. In: Aceto,
L., Henzinger, M., Sgall, J. (eds.) Automata, Languages and Programming. pp.
403–415. Springer Berlin Heidelberg, Berlin, Heidelberg (2011)

9. Banerjee, A., Peikert, C., Rosen, A.: Pseudorandom functions and lattices. In:
Pointcheval, D., Johansson, T. (eds.) Advances in Cryptology – EUROCRYPT
2012. pp. 719–737. Springer Berlin Heidelberg, Berlin, Heidelberg (2012)

10. Becker, A., Ducas, L., Gama, N., Laarhoven, T.: New directions in nearest neighbor
searching with applications to lattice sieving, pp. 10–24. Society for Industrial
and Applied Mathematics (2016). https://doi.org/10.1137/1.9781611974331.ch2,
https://epubs.siam.org/doi/abs/10.1137/1.9781611974331.ch2

11. Bindel, N., Hamburg, M., Hövelmanns, K., Hülsing, A., Persichetti, E.: Tighter
proofs of CCA security in the quantum random oracle model. pp. 61–90 (2019).
https://doi.org/10.1007/978-3-030-36033-7˙3

12. Birkett, J., Dent, A.W.: Relations among notions of plaintext awareness. In:
Cramer, R. (ed.) Public Key Cryptography – PKC 2008. pp. 47–64. Springer Berlin
Heidelberg, Berlin, Heidelberg (2008)

13. Bogdanov, A., Guo, S., Masny, D., Richelson, S., Rosen, A.: On the hardness of
learning with rounding over small modulus. In: Kushilevitz, E., Malkin, T. (eds.)
Theory of Cryptography. pp. 209–224. Springer Berlin Heidelberg, Berlin, Heidel-
berg (2016)

14. Bos, J., Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky, V., Schanck, J.M.,
Schwabe, P., Seiler, G., Stehlé, D.: Crystals-kyber: a cca-secure module-lattice-
based kem. In: 2018 IEEE European Symposium on Security and Privacy (Eu-
roS&P). pp. 353–367. IEEE (2018)

15. Bos, J.W., Costello, C., Ducas, L., Mironov, I., Naehrig, M., Niko-
laenko, V., Raghunathan, A., Stebila, D.: Frodo: Take off the ring! Prac-
tical, quantum-secure key exchange from LWE. pp. 1006–1018 (2016).
https://doi.org/10.1145/2976749.2978425

16. Chailloux, A., Loyer, J.: Lattice sieving via quantum random walks. In: Tibouchi,
M., Wang, H. (eds.) Advances in Cryptology - ASIACRYPT. pp. 63–91 (2021)

17. Chen, Y., Nguyen, P.Q.: Bkz 2.0: Better lattice security estimates. In: Lee, D.H.,
Wang, X. (eds.) Advances in Cryptology – ASIACRYPT 2011. pp. 1–20. Springer
Berlin Heidelberg, Berlin, Heidelberg (2011)

18. Cheon, J.H., Han, K., Kim, J., Lee, C., Son, Y.: A practical post-quantum public-
key cryptosystem based on spLWE. In: International Conference on Information
Security and Cryptology. pp. 51–74. Springer (2016)

SMAUG xxiii

19. Cheon, J.H., Kim, D., Lee, J., Song, Y.: Lizard: Cut off the tail! A practical
post-quantum public-key encryption from LWE and LWR. pp. 160–177 (2018).
https://doi.org/10.1007/978-3-319-98113-0˙9

20. D’Anvers, J.P., Guo, Q., Johansson, T., Nilsson, A., Vercauteren, F., Verbauwhede,
I.: Decryption failure attacks on ind-cca secure lattice-based schemes. In: Lin, D.,
Sako, K. (eds.) Public-Key Cryptography – PKC 2019. pp. 565–598. Springer In-
ternational Publishing, Cham (2019)

21. Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky, V., Schwabe, P., Seiler,
G., Stehlé, D.: CRYSTALS-Dilithium: A lattice-based digital signature
scheme 2018(1), 238–268 (2018). https://doi.org/10.13154/tches.v2018.i1.238-268,
https://tches.iacr.org/index.php/TCHES/article/view/839

22. D’Anvers, J.P., Karmakar, A., Sinha Roy, S., Vercauteren, F.: Saber: Module-lwr
based key exchange, cpa-secure encryption and cca-secure kem. In: International
Conference on Cryptology in Africa. pp. 282–305. Springer (2018)

23. Fouque, P.A., Hoffstein, J., Kirchner, P., Lyubashevsky, V., Pornin, T., Prest, T.,
Ricosset, T., Seiler, G., Whyte, W., Zhang, Z.: Falcon: Fast-fourier lattice-based
compact signatures over ntru. Submission to the NIST’s post-quantum cryptogra-
phy standardization process 36(5) (2018)

24. Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric en-
cryption schemes. In: Wiener, M. (ed.) Advances in Cryptology — CRYPTO’ 99.
pp. 537–554. Springer Berlin Heidelberg, Berlin, Heidelberg (1999)

25. Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric en-
cryption schemes. Journal of cryptology 26(1), 80–101 (2013)

26. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Pro-
ceedings of the twenty-eighth annual ACM symposium on Theory of computing.
pp. 212–219 (1996)

27. Guo, Q., Johansson, T., Stankovski, P.: Coded-bkw: Solving lwe using lattice codes.
In: Annual Cryptology Conference. pp. 23–42. Springer (2015)

28. Hanrot, G., Pujol, X., Stehlé, D.: Algorithms for the shortest and closest lattice
vector problems. In: Chee, Y.M., Guo, Z., Ling, S., Shao, F., Tang, Y., Wang, H.,
Xing, C. (eds.) Coding and Cryptology. pp. 159–190. Springer Berlin Heidelberg,
Berlin, Heidelberg (2011)

29. Hofheinz, D., Hövelmanns, K., Kiltz, E.: A modular analysis of the fujisaki-okamoto
transformation. In: Kalai, Y., Reyzin, L. (eds.) Theory of Cryptography. pp. 341–
371. Springer International Publishing, Cham (2017)

30. Hofheinz, D., Hövelmanns, K., Kiltz, E.: A modular analysis of the Fujisaki-
Okamoto transformation. pp. 341–371 (2017). https://doi.org/10.1007/978-3-319-
70500-2˙12

31. Hong, S.: Lizarderror. https://github.com/swanhong/LizardError (2018)

32. Hövelmanns, K., Kiltz, E., Schäge, S., Unruh, D.: Generic authenticated
key exchange in the quantum random oracle model. pp. 389–422 (2020).
https://doi.org/10.1007/978-3-030-45388-6˙14

33. Howgrave-Graham, N., Nguyen, P.Q., Pointcheval, D., Proos, J., Silverman, J.H.,
Singer, A., Whyte, W.: The impact of decryption failures on the security of ntru
encryption. In: Boneh, D. (ed.) Advances in Cryptology - CRYPTO 2003. pp.
226–246. Springer Berlin Heidelberg, Berlin, Heidelberg (2003)

34. Hövelmanns, K., Hülsing, A., Majenz, C.: Failing gracefully: Decryption failures
and the fujisaki-okamoto transform. Cryptology ePrint Archive, Paper 2022/365
(2022), https://eprint.iacr.org/2022/365, https://eprint.iacr.org/2022/365

xxiv Cheon et al.

35. Jiang, H., Zhang, Z., Chen, L., Wang, H., Ma, Z.: Ind-cca-secure key encapsu-
lation mechanism in the quantum random oracle model, revisited. In: Shacham,
H., Boldyreva, A. (eds.) Advances in Cryptology – CRYPTO 2018. pp. 96–125.
Springer International Publishing, Cham (2018)

36. Karmakar, A., Roy, S.S., Reparaz, O., Vercauteren, F., Verbauwhede, I.: Constant-
time discrete gaussian sampling. IEEE Transactions on Computers 67(11), 1561–
1571 (2018)

37. Kirchner, P., Fouque, P.A.: An improved bkw algorithm for lwe with applications to
cryptography and lattices. In: Annual Cryptology Conference. pp. 43–62. Springer
(2015)

38. Knuth, D., Yao, A.: Algorithms and Complexity: New Directions and Recent Re-
sults, chap. The complexity of nonuniform random number generation. Academic
Press (1976)

39. Lee, J., Kim, D., Lee, H., Lee, Y., Cheon, J.H.: Rlizard: Post-quantum key encap-
sulation mechanism for iot devices. IEEE Access 7, 2080–2091 (2018)

40. MATZOV: Report on the Security of LWE: Improved Dual Lat-
tice Attack (Apr 2022). https://doi.org/10.5281/zenodo.6493704,
https://doi.org/10.5281/zenodo.6493704

41. May, A.: How to meet ternary lwe keys. In: Malkin, T., Peikert, C. (eds.) Advances
in Cryptology – CRYPTO 2021. pp. 701–731. Springer International Publishing,
Cham (2021)

42. Saito, T., Xagawa, K., Yamakawa, T.: Tightly-secure key-encapsulation mechanism
in the quantum random oracle model. In: Nielsen, J.B., Rijmen, V. (eds.) Advances
in Cryptology – EUROCRYPT 2018. pp. 520–551. Springer International Publish-
ing, Cham (2018)

43. Schnorr, C.P., Euchner, M.: Lattice basis reduction: Improved practical algorithms
and solving subset sum problems. Mathematical programming 66(1), 181–199
(1994)

44. Vercauteren, I.F., Sinha Roy, S., D’Anvers, J.P., Karmakar, A.: Saber: Mod-lwr
based kem (round 3 submission)

