
GRAFTING: DECOUPLED SCALE FACTORS AND
MODULUS IN RNS-CKKS

Jung Hee Cheon1,2, Hyeongmin Choe2, Minsik Kang1, Jaehyung Kim3

Seonghak Kim2, Johannes Mono2,4, Taeyeong Noh2

2

FULLY HOMOMORPHIC ENCRYPTION (FHE)

• FHE enables computations on encrypted data without decryption.

• Provides efficient privacy-preserving computation.

• CKKS supports approximate computations on real/complex numbers.

F(x)

xx

F(x)

Enc

Dec

Client Server

EvalF

3

RNS-CKKS

• CKKS encodes Ԧ𝑧 ∈ ℂ𝑁/2 with scale factor Δ as:

• Plaintext: Δ𝑚 = Δ ⋅ 𝐷𝐹𝑇−1 Ԧ𝑧 ∈ 𝑅𝑄 = ℤ𝑄 𝑋 /(𝑋𝑁 + 1).

3

RNS-CKKS

• CKKS encodes Ԧ𝑧 ∈ ℂ𝑁/2 with scale factor Δ as:

• Plaintext: Δ𝑚 = Δ ⋅ 𝐷𝐹𝑇−1 Ԧ𝑧 ∈ 𝑅𝑄 = ℤ𝑄 𝑋 /(𝑋𝑁 + 1).

• CKKS Ciphertext: a pair over 𝑅𝑄 = ℤ𝑄 𝑋 /(𝑋𝑁 + 1)

𝑐𝑡 𝑚 = 𝑎, 𝑏 ∈ 𝑅𝑄
2 : 𝑎 ⋅ 𝑠 + 𝑏 = Δ𝑚 + 𝑒 𝑚𝑜𝑑 𝑄 ,

where 𝑠: secret, 𝑒: error, Δ𝑚 ≪ 𝑄.

3

RNS-CKKS

• CKKS encodes Ԧ𝑧 ∈ ℂ𝑁/2 with scale factor Δ as:

• Plaintext: Δ𝑚 = Δ ⋅ 𝐷𝐹𝑇−1 Ԧ𝑧 ∈ 𝑅𝑄 = ℤ𝑄 𝑋 /(𝑋𝑁 + 1).

• CKKS Ciphertext: a pair over 𝑅𝑄 = ℤ𝑄 𝑋 /(𝑋𝑁 + 1)

𝑐𝑡 𝑚 = 𝑎, 𝑏 ∈ 𝑅𝑄
2 : 𝑎 ⋅ 𝑠 + 𝑏 = Δ𝑚 + 𝑒 𝑚𝑜𝑑 𝑄 ,

where 𝑠: secret, 𝑒: error, Δ𝑚 ≪ 𝑄.

• For modulus 𝑄 = ς𝑖=0
ℓ 𝑞𝑖, the CRT: ℤ𝑄 ≅ ς𝑖=0

ℓ ℤ𝑞𝑖
 allows

𝑅𝑄 ≅ 𝑅𝑞0
× 𝑅𝑞1

× ⋯ × 𝑅𝑞ℓ

• Computation cost grows linearly with level ℓ.

3

RNS-CKKS

• CKKS encodes Ԧ𝑧 ∈ ℂ𝑁/2 with scale factor Δ as:

• Plaintext: Δ𝑚 = Δ ⋅ 𝐷𝐹𝑇−1 Ԧ𝑧 ∈ 𝑅𝑄 = ℤ𝑄 𝑋 /(𝑋𝑁 + 1).

• CKKS Ciphertext: a pair over 𝑅𝑄 = ℤ𝑄 𝑋 /(𝑋𝑁 + 1)

𝑐𝑡 𝑚 = 𝑎, 𝑏 ∈ 𝑅𝑄
2 : 𝑎 ⋅ 𝑠 + 𝑏 = Δ𝑚 + 𝑒 𝑚𝑜𝑑 𝑄 ,

where 𝑠: secret, 𝑒: error, Δ𝑚 ≪ 𝑄.

• For modulus 𝑄 = ς𝑖=0
ℓ 𝑞𝑖, the CRT: ℤ𝑄 ≅ ς𝑖=0

ℓ ℤ𝑞𝑖
 allows

𝑅𝑄 ≅ 𝑅𝑞0
× 𝑅𝑞1

× ⋯ × 𝑅𝑞ℓ

• Computation cost grows linearly with level ℓ.

⇒ Filling 𝑄 with machine’s word-size primes is the most efficient!

4

MODULUS RIGIDLY TIED TO SCALE FACTOR

For 𝑐𝑡 𝑚𝑖 = (𝑎𝑖 , 𝑏𝑖) (𝑖 = 1, 2), CKKS multiplication proceeds as follows:

4

MODULUS RIGIDLY TIED TO SCALE FACTOR

For 𝑐𝑡 𝑚𝑖 = (𝑎𝑖 , 𝑏𝑖) (𝑖 = 1, 2), CKKS multiplication proceeds as follows:

• Tensor & Relinearization:

𝑑0, 𝑑1 ∈ 𝑅𝑄
2 : 𝑑0 + 𝑑1𝑠 ≈ 𝑏1 + 𝑎1𝑠 𝑏2 + 𝑎2𝑠

 ≈ Δ2𝑚1𝑚2 + Δ 𝑚1𝑒2 + 𝑚2𝑒1 + 𝑒𝑟𝑒𝑙𝑖𝑛 (𝑚𝑜𝑑 𝑄).

4

MODULUS RIGIDLY TIED TO SCALE FACTOR

For 𝑐𝑡 𝑚𝑖 = (𝑎𝑖 , 𝑏𝑖) (𝑖 = 1, 2), CKKS multiplication proceeds as follows:

• Tensor & Relinearization:

𝑑0, 𝑑1 ∈ 𝑅𝑄
2 : 𝑑0 + 𝑑1𝑠 ≈ 𝑏1 + 𝑎1𝑠 𝑏2 + 𝑎2𝑠

 ≈ Δ2𝑚1𝑚2 + Δ 𝑚1𝑒2 + 𝑚2𝑒1 + 𝑒𝑟𝑒𝑙𝑖𝑛 (𝑚𝑜𝑑 𝑄).

• Rescale:

𝑐0, 𝑐1 =
𝑑0

𝑞ℓ
,

𝑑1

𝑞ℓ
∈ 𝑅𝑄/𝑞ℓ

2 , 𝑐0 + 𝑐1𝑠 ≈
Δ2

𝑞ℓ
𝑚1𝑚2 +

Δ

𝑞ℓ
(𝑚1𝑒2 + 𝑚2𝑒1) 𝑚𝑜𝑑

𝑄

𝑞ℓ
.

4

MODULUS RIGIDLY TIED TO SCALE FACTOR

For 𝑐𝑡 𝑚𝑖 = (𝑎𝑖 , 𝑏𝑖) (𝑖 = 1, 2), CKKS multiplication proceeds as follows:

• Tensor & Relinearization:

𝑑0, 𝑑1 ∈ 𝑅𝑄
2 : 𝑑0 + 𝑑1𝑠 ≈ 𝑏1 + 𝑎1𝑠 𝑏2 + 𝑎2𝑠

 ≈ Δ2𝑚1𝑚2 + Δ 𝑚1𝑒2 + 𝑚2𝑒1 + 𝑒𝑟𝑒𝑙𝑖𝑛 (𝑚𝑜𝑑 𝑄).

• Rescale:

𝑐0, 𝑐1 =
𝑑0

𝑞ℓ
,

𝑑1

𝑞ℓ
∈ 𝑅𝑄/𝑞ℓ

2 , 𝑐0 + 𝑐1𝑠 ≈
Δ2

𝑞ℓ
𝑚1𝑚2 +

Δ

𝑞ℓ
(𝑚1𝑒2 + 𝑚2𝑒1) 𝑚𝑜𝑑

𝑄

𝑞ℓ
.

∴ Hence, each modulus should match the scale factor Δ:

𝑞1 ≈ ⋯ ≈ 𝑞ℓ ≈ Δ for multiplication levels ℓ.

5

STRUCTURE ON CKKS MODULUS CHAIN

• Modulus chain in RNS-CKKS is constructed as follows:

𝑄0 ∣ 𝑄1 ∣ ⋯ ∣ 𝑄𝐿,

• 𝑄ℓ = 𝑞0𝑞1 ⋯ 𝑞ℓ ≈ Δℓ ⋅ 𝑞0 for each level ℓ.

5

STRUCTURE ON CKKS MODULUS CHAIN

• Modulus chain in RNS-CKKS is constructed as follows:

𝑄0 ∣ 𝑄1 ∣ ⋯ ∣ 𝑄𝐿,

• 𝑄ℓ = 𝑞0𝑞1 ⋯ 𝑞ℓ ≈ Δℓ ⋅ 𝑞0 for each level ℓ.

5

STRUCTURE ON CKKS MODULUS CHAIN

• Modulus chain in RNS-CKKS is constructed as follows:

𝑄0 ∣ 𝑄1 ∣ ⋯ ∣ 𝑄𝐿,

• 𝑄ℓ = 𝑞0𝑞1 ⋯ 𝑞ℓ ≈ Δℓ ⋅ 𝑞0 for each level ℓ.

• Key-switching keys are positioned at modulus 𝑃𝑄𝐿

• The auxiliary modulus 𝑃 allows key-switching at any level ℓ.

• The main property enabling this is:

𝑄ℓ ∣ 𝑄𝐿

5

STRUCTURE ON CKKS MODULUS CHAIN

• Modulus chain in RNS-CKKS is constructed as follows:

𝑄0 ∣ 𝑄1 ∣ ⋯ ∣ 𝑄𝐿,

• 𝑄ℓ = 𝑞0𝑞1 ⋯ 𝑞ℓ ≈ Δℓ ⋅ 𝑞0 for each level ℓ.

• Key-switching keys are positioned at modulus 𝑃𝑄𝐿

• The auxiliary modulus 𝑃 allows key-switching at any level ℓ.

• The main property enabling this is:

𝑄ℓ ∣ 𝑄𝐿

Why don’t we set 𝑄ℓ ∣ 𝑄𝐿 — not necessarily 𝑄ℓ ∣ 𝑄ℓ+1,

while each 𝑄ℓ is filled up with machine’s word-size primes?

GRAFTING:
A NOVEL MODULUS
MANAGEMENT SYSTEM

7

RATIONAL RESCALE WITH SPROUT

• We set the top-modulus as 𝑄𝑡𝑜𝑝 = 𝑞0𝑞1 ⋯ 𝑞𝐿−1 ⋅ 𝑟𝑡𝑜𝑝.

• Each 𝑞𝑖 is machine word-size prime.

• 𝑟𝑡𝑜𝑝 is called a sprout, reusable modulus factor of 𝑄𝑡𝑜𝑝.

7

RATIONAL RESCALE WITH SPROUT

• We set the top-modulus as 𝑄𝑡𝑜𝑝 = 𝑞0𝑞1 ⋯ 𝑞𝐿−1 ⋅ 𝑟𝑡𝑜𝑝.

• Each 𝑞𝑖 is machine word-size prime.

• 𝑟𝑡𝑜𝑝 is called a sprout, reusable modulus factor of 𝑄𝑡𝑜𝑝.

• Every possible modulus is of the form 𝑄 = 𝑞0𝑞1 ⋯ 𝑞ℓ ⋅ 𝑟.

• Here, ℓ < 𝐿 and 𝑟 ∣ 𝑟𝑡𝑜𝑝 to ensure 𝑄 ∣ 𝑄𝑡𝑜𝑝.

7

RATIONAL RESCALE WITH SPROUT

• We set the top-modulus as 𝑄𝑡𝑜𝑝 = 𝑞0𝑞1 ⋯ 𝑞𝐿−1 ⋅ 𝑟𝑡𝑜𝑝.

• Each 𝑞𝑖 is machine word-size prime.

• 𝑟𝑡𝑜𝑝 is called a sprout, reusable modulus factor of 𝑄𝑡𝑜𝑝.

• Every possible modulus is of the form 𝑄 = 𝑞0𝑞1 ⋯ 𝑞ℓ ⋅ 𝑟.

• Here, ℓ < 𝐿 and 𝑟 ∣ 𝑟𝑡𝑜𝑝 to ensure 𝑄 ∣ 𝑄𝑡𝑜𝑝.

• Rescale from modulus 𝑄 to 𝑄′(< 𝑄) proceeds as:

Rescale𝑄↦𝑄′ 𝑐𝑡 = 𝑎, 𝑏 ∈ 𝑅𝑄
2 =

𝑄′

𝑄
⋅ 𝑎 ,

𝑄′

𝑄
⋅ 𝑏 ∈ 𝑅𝑄′

2

7

RATIONAL RESCALE WITH SPROUT

• We set the top-modulus as 𝑄𝑡𝑜𝑝 = 𝑞0𝑞1 ⋯ 𝑞𝐿−1 ⋅ 𝑟𝑡𝑜𝑝.

• Each 𝑞𝑖 is machine word-size prime.

• 𝑟𝑡𝑜𝑝 is called a sprout, reusable modulus factor of 𝑄𝑡𝑜𝑝.

• Every possible modulus is of the form 𝑄 = 𝑞0𝑞1 ⋯ 𝑞ℓ ⋅ 𝑟.

• Here, ℓ < 𝐿 and 𝑟 ∣ 𝑟𝑡𝑜𝑝 to ensure 𝑄 ∣ 𝑄𝑡𝑜𝑝.

• Rescale from modulus 𝑄 to 𝑄′(< 𝑄) proceeds as:

Rescale𝑄↦𝑄′ 𝑐𝑡 = 𝑎, 𝑏 ∈ 𝑅𝑄
2 =

𝑄′

𝑄
⋅ 𝑎 ,

𝑄′

𝑄
⋅ 𝑏 ∈ 𝑅𝑄′

2

⇒ We call it Rational Rescale, a generalized Rescale in RNS-CKKS.

8

UNIVERSAL SPROUT

• To enable Rational Rescale with arbitrary bit-lengths,

𝑄 = 𝑞0𝑞1 ⋯ 𝑞ℓ ⋅ 𝑟 should represent integers of any bit-lengths.

8

UNIVERSAL SPROUT

• To enable Rational Rescale with arbitrary bit-lengths,

𝑄 = 𝑞0𝑞1 ⋯ 𝑞ℓ ⋅ 𝑟 should represent integers of any bit-lengths.

• Sprout 𝑟𝑡𝑜𝑝 should satisfy the following:

For word-size 𝜔, 0 ≤ ∀𝛿 < 𝜔, ∃𝑟 ∣ 𝑟𝑡𝑜𝑝 such that 𝑟 ≈ 2𝛿 .

8

UNIVERSAL SPROUT

• To enable Rational Rescale with arbitrary bit-lengths,

𝑄 = 𝑞0𝑞1 ⋯ 𝑞ℓ ⋅ 𝑟 should represent integers of any bit-lengths.

• Sprout 𝑟𝑡𝑜𝑝 should satisfy the following:

For word-size 𝜔, 0 ≤ ∀𝛿 < 𝜔, ∃𝑟 ∣ 𝑟𝑡𝑜𝑝 such that 𝑟 ≈ 2𝛿 .

⇒ We call such 𝑟𝑡𝑜𝑝 a universal sprout.

8

UNIVERSAL SPROUT

• To enable Rational Rescale with arbitrary bit-lengths,

𝑄 = 𝑞0𝑞1 ⋯ 𝑞ℓ ⋅ 𝑟 should represent integers of any bit-lengths.

• Sprout 𝑟𝑡𝑜𝑝 should satisfy the following:

For word-size 𝜔, 0 ≤ ∀𝛿 < 𝜔, ∃𝑟 ∣ 𝑟𝑡𝑜𝑝 such that 𝑟 ≈ 2𝛿 .

⇒ We call such 𝑟𝑡𝑜𝑝 a universal sprout.

• Example (for 𝜔 = 60):

• 𝑟𝑡𝑜𝑝 = 215 ⋅ 𝑟1 ⋅ 𝑟2 with 𝑟1 16-bit and 𝑟2 29-bit NTT primes:

8

UNIVERSAL SPROUT

• To enable Rational Rescale with arbitrary bit-lengths,

𝑄 = 𝑞0𝑞1 ⋯ 𝑞ℓ ⋅ 𝑟 should represent integers of any bit-lengths.

• Sprout 𝑟𝑡𝑜𝑝 should satisfy the following:

For word-size 𝜔, 0 ≤ ∀𝛿 < 𝜔, ∃𝑟 ∣ 𝑟𝑡𝑜𝑝 such that 𝑟 ≈ 2𝛿 .

⇒ We call such 𝑟𝑡𝑜𝑝 a universal sprout.

• Example (for 𝜔 = 60):

• 𝑟𝑡𝑜𝑝 = 215 ⋅ 𝑟1 ⋅ 𝑟2 with 𝑟1 16-bit and 𝑟2 29-bit NTT primes:

0 ≤ log2 𝑟 < 16 16 ≤ log2 𝑟 < 29 29 ≤ log2 𝑟 < 44 44 ≤ log2 𝑟 < 60

𝑟 20, 21, … , 215 𝑟1, 2𝑟1, … , 215𝑟1 𝑟2, 2𝑟2, … , 215𝑟2 𝑟1𝑟2, 2𝑟1𝑟2, … , 215𝑟1𝑟2

8

UNIVERSAL SPROUT

• To enable Rational Rescale with arbitrary bit-lengths,

𝑄 = 𝑞0𝑞1 ⋯ 𝑞ℓ ⋅ 𝑟 should represent integers of any bit-lengths.

• Sprout 𝑟𝑡𝑜𝑝 should satisfy the following:

For word-size 𝜔, 0 ≤ ∀𝛿 < 𝜔, ∃𝑟 ∣ 𝑟𝑡𝑜𝑝 such that 𝑟 ≈ 2𝛿 .

⇒ We call such 𝑟𝑡𝑜𝑝 a universal sprout.

• Example (for 𝜔 = 60):

• 𝑟𝑡𝑜𝑝 = 215 ⋅ 𝑟1 ⋅ 𝑟2 with 𝑟1 16-bit and 𝑟2 29-bit NTT primes:

1) Embed ℤ215 ℤ𝑝 and 2) composite NTT with ℤ𝑟1
× ℤ𝑟2

≅ ℤ𝑟1𝑟2

0 ≤ log2 𝑟 < 16 16 ≤ log2 𝑟 < 29 29 ≤ log2 𝑟 < 44 44 ≤ log2 𝑟 < 60

𝑟 20, 21, … , 215 𝑟1, 2𝑟1, … , 215𝑟1 𝑟2, 2𝑟2, … , 215𝑟2 𝑟1𝑟2, 2𝑟1𝑟2, … , 215𝑟1𝑟2

8

UNIVERSAL SPROUT

• To enable Rational Rescale with arbitrary bit-lengths,

𝑄 = 𝑞0𝑞1 ⋯ 𝑞ℓ ⋅ 𝑟 should represent integers of any bit-lengths.

• Sprout 𝑟𝑡𝑜𝑝 should satisfy the following:

For word-size 𝜔, 0 ≤ ∀𝛿 < 𝜔, ∃𝑟 ∣ 𝑟𝑡𝑜𝑝 such that 𝑟 ≈ 2𝛿 .

⇒ We call such 𝑟𝑡𝑜𝑝 a universal sprout.

• Example (for 𝜔 = 60):

• 𝑟𝑡𝑜𝑝 = 215 ⋅ 𝑟1 ⋅ 𝑟2 with 𝑟1 16-bit and 𝑟2 29-bit NTT primes:

1) Embed ℤ215 ℤ𝑝 and 2) composite NTT with ℤ𝑟1
× ℤ𝑟2

≅ ℤ𝑟1𝑟2

⇒ Universal sprout, within 2 machine words.

0 ≤ log2 𝑟 < 16 16 ≤ log2 𝑟 < 29 29 ≤ log2 𝑟 < 44 44 ≤ log2 𝑟 < 60

𝑟 20, 21, … , 215 𝑟1, 2𝑟1, … , 215𝑟1 𝑟2, 2𝑟2, … , 215𝑟2 𝑟1𝑟2, 2𝑟1𝑟2, … , 215𝑟1𝑟2

9

MODULUS RESURRECTION DURING COMPUTATIONS

9

MODULUS RESURRECTION DURING COMPUTATIONS

When rescaling 𝑄 = 𝑞0𝑞1 ⋯ 𝑞ℓ ⋅ 𝑟 by 𝑞 to obtain 𝑄′ ≈ 𝑄/𝑞,

9

MODULUS RESURRECTION DURING COMPUTATIONS

When rescaling 𝑄 = 𝑞0𝑞1 ⋯ 𝑞ℓ ⋅ 𝑟 by 𝑞 to obtain 𝑄′ ≈ 𝑄/𝑞,

• If 𝑞 ≤ 𝑟,

𝑄′ ≈ 𝑞0𝑞1 ⋯ 𝑞ℓ ⋅ (𝑟/𝑞).
• Choose 𝑟′ ∣ 𝑟𝑡𝑜𝑝 such that 𝑟′ ≈ 𝑟/𝑞.

9

MODULUS RESURRECTION DURING COMPUTATIONS

When rescaling 𝑄 = 𝑞0𝑞1 ⋯ 𝑞ℓ ⋅ 𝑟 by 𝑞 to obtain 𝑄′ ≈ 𝑄/𝑞,

• If 𝑞 ≤ 𝑟,

𝑄′ ≈ 𝑞0𝑞1 ⋯ 𝑞ℓ ⋅ (𝑟/𝑞).
• Choose 𝑟′ ∣ 𝑟𝑡𝑜𝑝 such that 𝑟′ ≈ 𝑟/𝑞.

• If 𝑞 > 𝑟,
𝑄′ ≈ 𝑞0𝑞1 ⋯ 𝑞ℓ−1 ⋅ 𝑞ℓ𝑟/𝑞 .

• Choose 𝑟′ ∣ 𝑟𝑡𝑜𝑝 such that 𝑟′ ≈ (2𝜔𝑟)/𝑞.

• Some factors of 𝑟𝑡𝑜𝑝 are resurrected during Rational Rescale.

9

MODULUS RESURRECTION DURING COMPUTATIONS

When rescaling 𝑄 = 𝑞0𝑞1 ⋯ 𝑞ℓ ⋅ 𝑟 by 𝑞 to obtain 𝑄′ ≈ 𝑄/𝑞,

• If 𝑞 ≤ 𝑟,

𝑄′ ≈ 𝑞0𝑞1 ⋯ 𝑞ℓ ⋅ (𝑟/𝑞).
• Choose 𝑟′ ∣ 𝑟𝑡𝑜𝑝 such that 𝑟′ ≈ 𝑟/𝑞.

• If 𝑞 > 𝑟,
𝑄′ ≈ 𝑞0𝑞1 ⋯ 𝑞ℓ−1 ⋅ 𝑞ℓ𝑟/𝑞 .

• Choose 𝑟′ ∣ 𝑟𝑡𝑜𝑝 such that 𝑟′ ≈ (2𝜔𝑟)/𝑞.

• Some factors of 𝑟𝑡𝑜𝑝 are resurrected during Rational Rescale.

 ⇒ We call this process Modulus Resurrection.

APPLICATION OF GRAFTING &
EXPERIMENTAL RESULTS

11

WHEN APPLIED TO STANDARD CKKS / BIT-CKKS

• Mult up to 2.0x, BTS up to 1.9x, key size reduced by up to 62%.

• Parameter w/ many small scale factors → accelerates well!

Parameter N log PQ # factors Mult (ms) Boot (s) Key size (MB)

HEaaN

[Cry22]

215
777 22 102.20 14.5 115.34

780 13 57.28 (1.8x) 7.6 (1.9x) 44.04 (62% ↓)

216 1555
30 329.38 37.0 157.29

27 247.45 (1.3x) 35.5 (1.1x) 146.80 (7% ↓)

Sec. Guide.

[BCC+24]
216 1734

35 360.84 86.5 220.20

29 179.87 (2.0x) 71.7 (1.2x) 157.29 (29% ↓)

Bit-CKKS

[BCKS24]

214
424 14 16.1 5.18 47.71

426 8 16.2 (1.8x) 2.74 (1.9x) 16.52 (65% ↓)

216
1598 46 884.8 102.10 144.70

1522 25 428.1 (2.1x) 56.41 (1.8x) 109.05 (25% ↓)

[Cry22] CryptoLab, HEaaN library, 2022.

[BCC+24] Jean-Philippe Bossuat et. al., Security guidelines for implementing homomorphic encryption, CIC 2025.

[BCKS24] Youngjin Bae et. al., Bootstrapping bits with CKKS, Eurocrypt 2024.

11

WHEN APPLIED TO STANDARD CKKS / BIT-CKKS

• Mult up to 2.1x, BTS up to 1.9x, key size reduced by up to 65%.

• Parameter w/ many small scale factors → accelerates well!

Parameter N log PQ # factors Mult (ms) Boot (s) Key size (MB)

HEaaN

[Cry22]

215
777 22 102.20 14.5 115.34

780 13 57.28 (1.8x) 7.6 (1.9x) 44.04 (62% ↓)

216 1555
30 329.38 37.0 157.29

27 247.45 (1.3x) 35.5 (1.1x) 146.80 (7% ↓)

Sec. Guide.

[BCC+24]
216 1734

35 360.84 86.5 220.20

29 179.87 (2.0x) 71.7 (1.2x) 157.29 (29% ↓)

Bit-CKKS

[BCKS24]

214
424 14 16.1 5.18 47.71

426 8 16.2 (1.8x) 2.74 (1.9x) 16.52 (65% ↓)

216
1598 46 884.8 102.10 144.70

1522 25 428.1 (2.1x) 56.41 (1.8x) 109.05 (25% ↓)

[Cry22] CryptoLab, HEaaN library, 2022.

[BCC+24] Jean-Philippe Bossuat et. al., Security guidelines for implementing homomorphic encryption, CIC 2025.

[BCKS24] Youngjin Bae et. al., Bootstrapping bits with CKKS, Eurocrypt 2024.

12

APPLICATION TO HOMOMORPHIC COMPARISON [CKK20]

• 𝚫-Changeability: Decoupling allows changing Δ freely even during
computation!

• Application?

• Adaptive Precision Computation in Plain World allows better
latency/memory:

• ML training: FP16 ⇔ FP32

• Iterative solvers: FP8 → FP16 → FP32

• In Encrypted World, Grafting allows changing precision by changing 𝚫
• E.g., Iterative solver with 𝚫0 ≪ 𝚫1 ≪ 𝚫2

• For each 𝑥𝑖+1 = 𝑓(𝑥𝑖), we can use fine-tuned 𝚫𝑖

• Mod consumption: 3Δ2 ⋅ 𝑑𝑒𝑝𝑡ℎ𝑓 → (Δ0 + Δ1 + Δ2) ⋅ 𝑑𝑒𝑝𝑡ℎ𝑓

[CKK20] Jung Hee Cheon et. al., Efficient homomorphic comparison methods with optimal complexity, Asiacrypt 2020.

12

APPLICATION TO HOMOMORPHIC COMPARISON [CKK20]

• 𝚫-Changeability: Decoupling allows changing Δ freely even during
computation!

• Application?

• Adaptive Precision Computation in Plain World allows better
latency/memory:

• ML training: FP16 ⇔ FP32

• Iterative solvers: FP8 → FP16 → FP32

• In Encrypted World, Grafting allows changing precision by changing 𝚫
• E.g., Iterative solver with 𝚫0 ≪ 𝚫1 ≪ 𝚫2

• For each 𝑥𝑖+1 = 𝑓(𝑥𝑖), we can use fine-tuned 𝚫𝑖

• Mod consumption: 3Δ2 ⋅ 𝑑𝑒𝑝𝑡ℎ𝑓 → (Δ0 + Δ1 + Δ2) ⋅ 𝑑𝑒𝑝𝑡ℎ𝑓

[CKK20] Jung Hee Cheon et. al., Efficient homomorphic comparison methods with optimal complexity, Asiacrypt 2020.

12

APPLICATION TO HOMOMORPHIC COMPARISON [CKK20]

• 𝚫-Changeability: Decoupling allows changing Δ freely even during
computation!

• Application?

• Adaptive Precision Computation in Plain World allows better
latency/memory:

• ML training: FP16 ⇔ FP32

• Iterative solvers: FP8 → FP16 → FP32

• In Encrypted World?

• Grafting now allows changing precision by changing 𝚫

[CKK20] Jung Hee Cheon et. al., Efficient homomorphic comparison methods with optimal complexity, Asiacrypt 2020.

13

APPLICATION TO HOMOMORPHIC COMPARISON [CKK20]

• Homomorphic Comparison [CKK20] use iterative method:

• Evaluate 𝑓𝑘 ∘ 𝑔ℓ: 𝐼𝜖 → 𝐼1−2−𝛼, iteratively narrowing the interval.

• 𝐼𝜖 ≔ −1, −𝜖 ∪ 𝜖, 1

• 𝑓 and 𝑔: deg-7 polynomials

[CKK20] Jung Hee Cheon et. al., Efficient homomorphic comparison methods with optimal complexity, Asiacrypt 2020.

13

APPLICATION TO HOMOMORPHIC COMPARISON [CKK20]

• Homomorphic Comparison [CKK20] use iterative method:

• Evaluate 𝑓𝑘 ∘ 𝑔ℓ: 𝐼𝜖 → 𝐼1−2−𝛼, iteratively narrowing the interval.

• 𝐼𝜖 ≔ −1, −𝜖 ∪ 𝜖, 1

• 𝑓 and 𝑔: deg-7 polynomials

➔ We can save modulus by using
smaller Δ for early iterations!

[CKK20] Jung Hee Cheon et. al., Efficient homomorphic comparison methods with optimal complexity, Asiacrypt 2020.

13

APPLICATION TO HOMOMORPHIC COMPARISON [CKK20]

• Homomorphic Comparison [CKK20] use iterative method:

• Evaluate 𝑓𝑘 ∘ 𝑔ℓ: 𝐼𝜖 → 𝐼1−2−𝛼, iteratively narrowing the interval.

• 𝐼𝜖 ≔ −1, −𝜖 ∪ 𝜖, 1

• 𝑓 and 𝑔: deg-7 polynomials

➔ We can save modulus by using
smaller Δ for early iterations!

[CKK20] Jung Hee Cheon et. al., Efficient homomorphic comparison methods with optimal complexity, Asiacrypt 2020.

Comparison Function 𝑓(2) ∘ 𝑔(4) 𝑓(2) ∘ 𝑔(8)

Methods Original Changing 𝛥 (28, 30, 42 bits) Original Changing 𝛥 (31, 42 bits)

Consumed

Modulus (bit)

(42 × 3) × 6

= 756

(28 × 3) × 4 + (30 × 3)

+ (42 × 3) = 552 (27% ↓)
(42 × 3) × 10

= 1260

(31 × 3) × 9 + (42 × 3)

= 963 (24% ↓)

Precision (bit) 23.1 23.1 23.5 23.3

⌘ Bit-precision := − log2 max error from 100 iterations

13

APPLICATION TO HOMOMORPHIC COMPARISON [CKK20]

• Homomorphic Comparison [CKK20] use iterative method:

• Evaluate 𝑓𝑘 ∘ 𝑔ℓ: 𝐼𝜖 → 𝐼1−2−𝛼, iteratively narrowing the interval.

• 𝐼𝜖 ≔ −1, −𝜖 ∪ 𝜖, 1

• 𝑓 and 𝑔: deg-7 polynomials

➔ We can save modulus by using
smaller Δ for early iterations!

[CKK20] Jung Hee Cheon et. al., Efficient homomorphic comparison methods with optimal complexity, Asiacrypt 2020.

Comparison Function 𝑓(2) ∘ 𝑔(4) 𝑓(2) ∘ 𝑔(8)

Methods Original Changing 𝛥 (28, 30, 42 bits) Original Changing 𝛥 (31, 42 bits)

Consumed

Modulus (bit)

(42 × 3) × 6

= 756

(28 × 3) × 4 + (30 × 3)

+ (42 × 3) = 552 (27% ↓)
(42 × 3) × 10

= 1260

(31 × 3) × 9 + (42 × 3)

= 963 (24% ↓)

Precision (bit) 23.1 23.1 23.5 23.3

⌘ Bit-precision := − log2 max error from 100 iterations

16

SUMMARY

• Grafting redesigns modulus usage in RNS-CKKS

• Enable arbitrary bit-lengths Rescale,

• No additional key-switching keys required.

⇒ Grafting improves RNS-CKKS as:

1. Machine word-size RNS Modulus

• Up to 2.01x faster multiplication and bootstrapping.

• Up to 62% reduction in ciphertext/key-switching key size.

2. Flexible Scale factor

• Scale adjustable independently of the modulus.

• Modulus reduction from freely adjustable scale factor in [CKK20].

16

SUMMARY

• Grafting redesigns modulus usage in RNS-CKKS

• Enable arbitrary bit-lengths Rescale,

• No additional key-switching keys required.

⇒ Grafting improves RNS-CKKS:

1. Performance from machine word-size RNS moduli

• Up to 2.1x faster multiplication and 1.9x faster bootstrapping.

• Up to 62% reduction in ciphertext/key-switching key size.

2. Flexible Scale factor

• Scale adjustable independently of the modulus.

• Modulus reduction from freely adjustable scale factor in [CKK20].

16

SUMMARY

• Grafting redesigns modulus usage in RNS-CKKS

• Enable arbitrary bit-lengths Rescale,

• No additional key-switching keys required.

⇒ Grafting improves RNS-CKKS:

1. Performance from machine word-size RNS moduli

• Up to 2.1x faster multiplication and 1.9x faster bootstrapping.

• Up to 62% reduction in ciphertext/key-switching key size.

2. Flexibility from decoupling

• Scale/precision adjustable independently of ciphertext modulus.

• Modulus saving for iterative methods, e.g., homomorphic comparison.

EPRINT: 2024/1014

THANK YOU!

17

	Slide 1: grafting: decoupled scale factors and modulus in rns-ckks
	Slide 2: Fully homomorphic encryption (FHE)
	Slide 3: RNS-ckks
	Slide 4: RNS-ckks
	Slide 5: RNS-ckks
	Slide 6: RNS-ckks
	Slide 7: modulus rigidly tied to scale factor
	Slide 8: modulus rigidly tied to scale factor
	Slide 9: modulus rigidly tied to scale factor
	Slide 10: modulus rigidly tied to scale factor
	Slide 11: structure on CKKS Modulus chain
	Slide 12: structure on CKKS Modulus chain
	Slide 13: structure on CKKS Modulus chain
	Slide 14: structure on CKKS Modulus chain
	Slide 15: Grafting: a novel modulus management system
	Slide 16: rational rescale with sprout
	Slide 17: rational rescale with sprout
	Slide 18: rational rescale with sprout
	Slide 19: rational rescale with sprout
	Slide 20: universal sprout
	Slide 21: universal sprout
	Slide 22: universal sprout
	Slide 23: universal sprout
	Slide 24: universal sprout
	Slide 25: universal sprout
	Slide 26: universal sprout
	Slide 27: Modulus resurrection during computations
	Slide 28: Modulus resurrection during computations
	Slide 29: Modulus resurrection during computations
	Slide 30: Modulus resurrection during computations
	Slide 31: Modulus resurrection during computations
	Slide 32: Application of grafting & Experimental Results
	Slide 33: When Applied to Standard CKKS / Bit-CKKS
	Slide 34: When Applied to Standard CKKS / Bit-CKKS
	Slide 35: Application to Homomorphic comparison [ckk20]
	Slide 36: Application to Homomorphic comparison [ckk20]
	Slide 37: Application to Homomorphic comparison [ckk20]
	Slide 38: Application to Homomorphic comparison [ckk20]
	Slide 39: Application to Homomorphic comparison [ckk20]
	Slide 40: Application to Homomorphic comparison [ckk20]
	Slide 41: Application to Homomorphic comparison [ckk20]
	Slide 43: Summary
	Slide 44: Summary
	Slide 45: Summary
	Slide 46: eprint: 2024/1014 Thank you!

