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* FHE enables computations on encrypted data without decryption.
* Provides efficient privacy-preserving computation.

* CKKS supports approximate computations on real/complex numbers.
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RNS-CKKS

e CKKS encodes zZ € CN/Z with scale factor A as:
* Plaintext: Am = |A- DFT™'(2)] € Ry = Zo[X]/ (X" + 1).

* CKKS Ciphertext: a pair over Ry = Zo[X]/(X" + 1)
ct(m) = (a,b) ERG: a-s+b=Am+e (modQ),

where s: secret, e: error, Am < (.

* For modulus @ = Hfzo qi, the CRT: Zy = fzo Lgq; allows
RQ = RCIo X qu X oo X ng

e Computation cost grows linearly with level 4.

= Filling Q with machine’s word-size primes is the most efficient!
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MODULUS RIGIDLY TIED TO SCALE FACTOR
For ct(m;) = (a;, b;) (i = 1,2), CKKS multiplication proceeds as follows:

e Tensor & Relinearization:

(do,dy) € RG: do +dys = (by +a;5)(b; + a,s)
~ Amym, + A(mye; + myeq) + eperin (Mod Q).

e Rescale:

2

— (%] |4 2 ~ 20 A Q
(co, 1) = ( qj , L”D €ERG/qy CotC1S= o mam, + - (me, + mye;) (mod q{)).

~. Hence, each modulus should match the scale factor A:

q, ~ -+ = q, = A for multiplication levels £.



STRUCTURE ON CKKS MODULUS CHAIN

e Modulus chain in RNS-CKKS is constructed as follows:

Qo 1 Q1 1+ 10Qy,

* Q) = qoqy - qs = AP - g for each level 4.
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STRUCTURE ON CKKS MODULUS CHAIN

E.

e Modulus chain in RNS-CKKS is constructed as follows:

QO | Ql | | QL; Rescale

* Qr=4qpqq1-"qr = Af - q, for each level ¥.

* The auxiliary modulus P allows key-switching at any level £.
* The main property enabling this is:

QL
* Key-switching keys are positioned at modulus PQ; I
| 1
q'!' ﬁﬂ.

Q. 10,

Why don’t we set 0, | Q; — not necessarily Q, | Q4 1,

while each @, is filled up with machine’s word-size primes?



GRAFTING:
A NOVEL MODULUS
MANAGEMENT SYSTEM
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RATIONAL RESCALE WITH SPROUT

* We set the top-modulus as Qtpp = G041 *** Q-1 * Ttop-
* Each q; is machine word-size prime.
* Tiop IS called a sprout, reusable modulus factor of Q.

* Every possible modulus is of the form Q = qyq1 - qp - T.
* Here, £ < L andr | 1t,, to ensure Q | Qpp-

* Rescale from modulus Q to Q' (< Q) proceeds as:
Rescal (ct = (a,b) €R3) = C ol |% b]) e r?
escaley,,or(ct = (a, J=\|0 al, 0 o’

= We call it Rational Rescale, a generalized Rescale in RNS-CKKS.
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UNIVERSAL SPROUT

* To enable Rational Rescale with arbitrary bit-lengths,

Q = qoq1 - qp - T should represent integers of any bit-lengths.
* Sprout 134, should satisfy the following:

For word-size w, 0 < V§ < w, 3r | Ttop such that r ~ 29,

= We call such 1, a universal sprout.

 Example (for w = 60):
* Tyop = 212 -1y - 1, with 17 16-bit and 1, 29-bit NTT primes:
0<log,r <16 16 <log,r < 29 29 <log,r < 44 44 < log,r < 60
r AV DN, ey B2 1,21, o, 201y 19, 21y, ., 21915 173, 21115, ., 2151175
1) Embed Z,15 < Z, and 2) composite NTT with Z,. X Z,, = L.,
= Universal sprout, within 2 machine words.
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MODULUS RESURRECTION DURING COMPUTATIONS

When rescaling Q = qy4q1 - q, - T by q to obtain Q' = Q/q,

Gadgets
 Ifqg <, -
P
, ~y
Q" = qoq1q¢ " (r/q). ! i
* Choose ' | 17, such that v’ =~ r/q. Qo
L LA o
e Ifg>r, II
I o Qi
Q" = qoq1 - qe-1 - (qer /).
* Choose ' | 17, such that ' = (291)/q. 0, iy
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MODULUS RESURRECTION DURING COMPUTATIONS

When rescaling Q = qy4q1 - q, - T by q to obtain Q' = Q/q,

 Ifqg <,

Q' = qoq1- 9, (r/q).

* Choose ' | 17, such that v’ =~ r/q.

e Ifg>r,
Q' = qoq1 - qo-1 " (qer/ Q).

* Choose ' | 17, such that ' = (291)/q.
* Some factors of 1, are resurrected during Rational Rescale.
= We call this process Modulus Resurrectiol
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APPLICATION OF GRAFTING &
EXPERIMENTAL RESULTS



WHEN APPLIED TO STANDARD CKKS / BIT-CKKS
# factors Mult (ms) Boot (s) Key size (MB)

)15 777 22 ) 102.20 14.5 115.34
HEaaN 780 13 57.28 (1.8x) 7.6 (1.9x) 44.04 (62% )
[Cry22] i 30 329.38 37.0 157.29

2 1555 )
27 247.45 (1.3x) 35.5 (1.1x) 146.80 (7% 1)

Sec. Guide. 516 17an 35 ) 360.84 86.5 220.20

[BCC+24] 29 179.87 (2.0x) 71.7 (1.2x) 157.29 (29% 1)

* Mult up to 2.0x, BTS up to 1.9x, key size reduced by up to 62%.
* Parameter w/ many small scale factors = accelerates well!

[Cry22] CryptoLab, HEaaN library, 2022.
[BCC+24] Jean-Philippe Bossuat et. al., Security guidelines for implementing homomorphic encryption, CIC 2025.
[BCKS24] Youngjin Bae et. al., Bootstrapping bits with CKKS, Eurocrypt 2024.
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WHEN APPLIED TO STANDARD CKKS / BIT-CKKS

215
HEaaN

22
[Cry22] 16

Sec. Guide. 44

[BCC+24]

214
Bit-CKKS
[BCKS24]

216

7
780

1555

1734

424
426
1598
1522

22
13
30
27
35
29
14
8
46
25

N log PQ # factors

)
)

Mult (ms)
102.20
57.28 (1.8x)
329.38
247.45 (1.3x)
360.84
179.87 (2.0x)
16.1
16.2 (1.8x)
884.8
428.1 (2.1x)

Boot (s)
14.5
7.6 (1.9%)
37.0
35.5 (1.1x)
86.5
717 (1.2x)
5.18
2.74 (1.9x)
102.10
56.41 (1.8x)

Key size (MB)
115.34
44,04 (62% 1)
157.29
146.80 (7% |)
220.20
157.29 (29% 1)
4771
16.52 (65% {)
144.70
109.05 (25% 1)

* Mult up to 2.1x, BTS up to 1.9x, key size reduced by up to 65%.
* Parameter w/ many small scale factors = accelerates well!

CryptoLab, HEaaN library, 2022.
Jean-Philippe Bossuat et. al., Security guidelines for implementing homomorphic encryption, CIC 2025.
Youngjin Bae et. al., Bootstrapping bits with CKKS, Eurocrypt 2024.

[Cry22]
[BCC+24]
[BCKS24]
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APPLICATION TO HOMOMORPHIC COMPARISON [CKK20]

* A-Changeability: Decoupling allows changing A freely even during
computation!

[CKK20] Jung Hee Cheon et. al., Efficient homomorphic comparison methods with optimal complexity, Asiacrypt 2020.
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APPLICATION TO HOMOMORPHIC COMPARISON [CKK20]

* A-Changeability: Decoupling allows changing A freely even during
computation!

* Application?
* Adaptive Precision Computation in Plain World allows better
latency/memory:

* ML training: FP16 & FP32
* |terative solvers: FP8 = FP16 = FP32

* In Encrypted World?
* Grafting now allows changing precision by changing A

[CKK20] Jung Hee Cheon et. al., Efficient homomorphic comparison methods with optimal complexity, Asiacrypt 2020.
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APPLICATION TO HOMOMORPHIC COMPARISON [CKK20]

* Homomorphic Comparison [CKK20] use iterative method:
* Evaluate f¥ o g*:1. — I,_,-«, iteratively narrowing the interval.

; — 4= : 1+

AN . — g3
: — 44

* IE = [_1' _E] U [6, 1] T S o | — 1o

* f and g: deg-7 polynomials

: I ! I :

T T T T T T
210 (. Ipryl I2 4

. | I -

[CKK20] Jung Hee Cheon et. al., Efficient homomorphic comparison methods with optimal complexity, Asiacrypt 2020.



APPLICATION TO HOMOMORPHIC COMPARISON [CKK20]

* Homomorphic Comparison [CKK20] use iterative method:
* Evaluate f¥ o g*:1. — I,_,-«, iteratively narrowing the interval.

e I, :==[—1,—€] U|¢ 1]
* f and g: deg-7 polynomials

— N
7 ; — 42
SR |—9
T —ma

=» We can save modulus by using
smaller A for early iterations!

[CKK20] Jung Hee Cheon et. al., Efficient homomorphic comparison methods with optimal complexity, Asiacrypt 2020.

1 1 'l
I Tz g
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APPLICATION TO HOMOMORPHIC COMPARISON [CKK20]

* Homomorphic Comparison [CKK20] use iterative method:

e Evaluate f¥ o gt: I, - I,_,-a, iteratively narrowing the interval.
. IE - [_1’ _E] Y [E’ 1] ey | ! .
* f and g: deg-7 polynomials f | -

§ N — gz
) Sl ——94

=» We can save modulus by using g
smaller A for early iterations! N
Comparison Function f@og®
Methods Original Changing 4 (28, 30, 42 bits)
Consumed (42 x 3) x 6 (28 x 3) x 4 + (30 x 3)
Modulus (bit) = 756 + (42 x 3) = 552 (27% 1)
Precision (bit) 23.1 23.1
38 Bit-precision := — log,|max error| from 100 iterations

13
[CKK20] Jung Hee Cheon et. al., Efficient homomorphic comparison methods with optimal complexity, Asiacrypt 2020.



APPLICATION TO HOMOMORPHIC COMPARISON [CKK20]

* Homomorphic Comparison [CKK20] use iterative method:
e Evaluate f¥ o g¥: 1. - I,_,-«, iteratively narrowing the interval.

¢ IE = [_1; _E] U [E; 1] R 1 sy - _ .| :ft:-n
* f and g: deg-7 polynomials T =] '
. IR 1
= We can save modulus by using _— | iy ¥
smaller A for early iterations! T A7 |
Methods Original Changing 4 (28, 30, 42 bits) Original Changing 4 (31, 42 bits)
Consumed (42 x 3) x 6 (28 x 3) x 4 + (30 x 3) (42 x 3) x 10 (31 x 3) x 9 + (42 x 3)
Modulus (bit) = 756 + (42 x 3) = 552 (27% 1) = 1260 = 963 (24% 1)
Precision (bit) 23.1 23.1 23.5 23.3
df Bit-precision := —log,|max error| from 100 iterations

13
[CKK20] Jung Hee Cheon et. al., Efficient homomorphic comparison methods with optimal complexity, Asiacrypt 2020.
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SUMMARY

* Grafting redesigns modulus usage in RNS-CKKS

* Enable arbitrary bit-lengths Rescale,
* No additional key-switching keys required.

= Grafting improves RNS-CKKS:

1. Performance from machine word-size RNS moduli
* Up to 2.1x faster multiplication and 1.9x faster bootstrapping.
* Up to 62% reduction in ciphertext/key-switching key size.

2. Flexibility from decoupling
* Scale/precision adjustable independently of ciphertext modulus.
* Modulus saving for iterative methods, e.g., homomorphic comparison.
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EPRINT: 2024/1014

THANK YOU!

17



	Slide 1: grafting: decoupled scale factors and modulus in rns-ckks 
	Slide 2: Fully homomorphic encryption (FHE)
	Slide 3: RNS-ckks
	Slide 4: RNS-ckks
	Slide 5: RNS-ckks
	Slide 6: RNS-ckks
	Slide 7: modulus rigidly tied to scale factor
	Slide 8: modulus rigidly tied to scale factor
	Slide 9: modulus rigidly tied to scale factor
	Slide 10: modulus rigidly tied to scale factor
	Slide 11: structure on CKKS Modulus chain
	Slide 12: structure on CKKS Modulus chain
	Slide 13: structure on CKKS Modulus chain
	Slide 14: structure on CKKS Modulus chain
	Slide 15: Grafting:  a novel modulus management system
	Slide 16: rational rescale with sprout
	Slide 17: rational rescale with sprout
	Slide 18: rational rescale with sprout
	Slide 19: rational rescale with sprout
	Slide 20: universal sprout
	Slide 21: universal sprout
	Slide 22: universal sprout
	Slide 23: universal sprout
	Slide 24: universal sprout
	Slide 25: universal sprout
	Slide 26: universal sprout
	Slide 27: Modulus resurrection during computations
	Slide 28: Modulus resurrection during computations
	Slide 29: Modulus resurrection during computations
	Slide 30: Modulus resurrection during computations
	Slide 31: Modulus resurrection during computations
	Slide 32: Application of grafting &  Experimental Results
	Slide 33: When Applied to Standard CKKS / Bit-CKKS
	Slide 34: When Applied to Standard CKKS / Bit-CKKS
	Slide 35: Application to Homomorphic comparison [ckk20]
	Slide 36: Application to Homomorphic comparison [ckk20]
	Slide 37: Application to Homomorphic comparison [ckk20]
	Slide 38: Application to Homomorphic comparison [ckk20]
	Slide 39: Application to Homomorphic comparison [ckk20]
	Slide 40: Application to Homomorphic comparison [ckk20]
	Slide 41: Application to Homomorphic comparison [ckk20]
	Slide 43: Summary
	Slide 44: Summary
	Slide 45: Summary
	Slide 46:  eprint: 2024/1014  Thank you!

