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FULLY HOMOMORPHIC ENCRYPTION (FHE)

• FHE enables computations on encrypted data without decryption.

• Provides efficient privacy-preserving computation.

• CKKS supports approximate computations on real/complex numbers. 
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RNS-CKKS

• CKKS encodes Ԧ𝑧 ∈ ℂ𝑁/2 with scale factor Δ as:

• Plaintext: Δ𝑚 = Δ ⋅ 𝐷𝐹𝑇−1 Ԧ𝑧 ∈ 𝑅𝑄 = ℤ𝑄 𝑋 /(𝑋𝑁 + 1).
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• CKKS encodes Ԧ𝑧 ∈ ℂ𝑁/2 with scale factor Δ as:

• Plaintext: Δ𝑚 = Δ ⋅ 𝐷𝐹𝑇−1 Ԧ𝑧 ∈ 𝑅𝑄 = ℤ𝑄 𝑋 /(𝑋𝑁 + 1).

• CKKS Ciphertext: a pair over 𝑅𝑄 = ℤ𝑄 𝑋 /(𝑋𝑁 + 1)

𝑐𝑡 𝑚 = 𝑎, 𝑏 ∈ 𝑅𝑄
2 :  𝑎 ⋅ 𝑠 + 𝑏 = Δ𝑚 + 𝑒 𝑚𝑜𝑑 𝑄 ,

where 𝑠: secret, 𝑒: error, Δ𝑚 ≪ 𝑄.
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• For modulus 𝑄 = ς𝑖=0
ℓ 𝑞𝑖, the CRT: ℤ𝑄 ≅ ς𝑖=0

ℓ ℤ𝑞𝑖
 allows

𝑅𝑄 ≅ 𝑅𝑞0
× 𝑅𝑞1

× ⋯ × 𝑅𝑞ℓ

• Computation cost grows linearly with level ℓ.
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⇒ Filling 𝑄 with machine’s word-size primes is the most efficient!
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MODULUS RIGIDLY TIED TO SCALE FACTOR

For 𝑐𝑡 𝑚𝑖 = (𝑎𝑖 , 𝑏𝑖) (𝑖 = 1, 2), CKKS multiplication proceeds as follows: 
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For 𝑐𝑡 𝑚𝑖 = (𝑎𝑖 , 𝑏𝑖) (𝑖 = 1, 2), CKKS multiplication proceeds as follows: 

• Tensor & Relinearization:

𝑑0, 𝑑1 ∈ 𝑅𝑄
2 :  𝑑0 + 𝑑1𝑠 ≈ 𝑏1 + 𝑎1𝑠 𝑏2 + 𝑎2𝑠  

 ≈ Δ2𝑚1𝑚2 + Δ 𝑚1𝑒2 + 𝑚2𝑒1 + 𝑒𝑟𝑒𝑙𝑖𝑛 (𝑚𝑜𝑑 𝑄).
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Δ
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.
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MODULUS RIGIDLY TIED TO SCALE FACTOR
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𝑄

𝑞ℓ
.

∴ Hence, each modulus should match the scale factor Δ:

𝑞1 ≈ ⋯ ≈ 𝑞ℓ ≈ Δ for multiplication levels ℓ.
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STRUCTURE ON CKKS MODULUS CHAIN

• Modulus chain in RNS-CKKS is constructed as follows:

𝑄0 ∣ 𝑄1 ∣ ⋯ ∣ 𝑄𝐿, 

• 𝑄ℓ = 𝑞0𝑞1 ⋯ 𝑞ℓ ≈ Δℓ ⋅ 𝑞0 for each level ℓ.
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• Key-switching keys are positioned at modulus 𝑃𝑄𝐿

• The auxiliary modulus 𝑃 allows key-switching at any level ℓ.

• The main property enabling this is:

𝑄ℓ ∣ 𝑄𝐿

Why don’t we set 𝑄ℓ ∣ 𝑄𝐿 — not necessarily 𝑄ℓ ∣ 𝑄ℓ+1, 

while each 𝑄ℓ is filled up with machine’s word-size primes?



GRAFTING: 
A NOVEL MODULUS 
MANAGEMENT SYSTEM
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RATIONAL RESCALE WITH SPROUT

• We set the top-modulus as 𝑄𝑡𝑜𝑝 = 𝑞0𝑞1 ⋯ 𝑞𝐿−1 ⋅ 𝑟𝑡𝑜𝑝.

• Each 𝑞𝑖 is machine word-size prime.

• 𝑟𝑡𝑜𝑝 is called a sprout, reusable modulus factor of 𝑄𝑡𝑜𝑝.
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• Every possible modulus is of the form 𝑄 = 𝑞0𝑞1 ⋯ 𝑞ℓ ⋅ 𝑟.

• Here, ℓ < 𝐿 and 𝑟 ∣ 𝑟𝑡𝑜𝑝 to ensure 𝑄 ∣ 𝑄𝑡𝑜𝑝.
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⇒ We call it Rational Rescale, a generalized Rescale in RNS-CKKS.
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UNIVERSAL SPROUT

• To enable Rational Rescale with arbitrary bit-lengths,

𝑄 = 𝑞0𝑞1 ⋯ 𝑞ℓ ⋅ 𝑟 should represent integers of any bit-lengths.
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1) Embed ℤ215 ℤ𝑝 and 2) composite NTT with ℤ𝑟1
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• Some factors of 𝑟𝑡𝑜𝑝 are resurrected during Rational Rescale.

                               ⇒ We call this process Modulus Resurrection.



APPLICATION OF GRAFTING & 
EXPERIMENTAL RESULTS
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WHEN APPLIED TO STANDARD CKKS / BIT-CKKS

• Mult up to 2.0x, BTS up to 1.9x, key size reduced by up to 62%.

• Parameter w/ many small scale factors → accelerates well!

Parameter N log PQ # factors Mult (ms) Boot (s) Key size (MB)

HEaaN

[Cry22]

215
777 22 102.20 14.5 115.34

780 13 57.28 (1.8x) 7.6 (1.9x) 44.04 (62% ↓)

216 1555
30 329.38 37.0 157.29

27 247.45 (1.3x) 35.5 (1.1x) 146.80 (7% ↓)

Sec. Guide. 

[BCC+24]
216 1734

35 360.84 86.5 220.20

29 179.87 (2.0x) 71.7 (1.2x) 157.29 (29% ↓)

Bit-CKKS

[BCKS24]

214
424 14 16.1 5.18 47.71

426 8 16.2 (1.8x) 2.74 (1.9x) 16.52 (65% ↓)

216
1598 46 884.8 102.10 144.70

1522 25 428.1 (2.1x) 56.41 (1.8x) 109.05 (25% ↓)

[Cry22] CryptoLab, HEaaN library, 2022.

[BCC+24] Jean-Philippe Bossuat et. al.,  Security guidelines for implementing homomorphic encryption, CIC 2025. 

[BCKS24] Youngjin Bae et. al., Bootstrapping bits with CKKS, Eurocrypt 2024. 
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WHEN APPLIED TO STANDARD CKKS / BIT-CKKS

• Mult up to 2.1x, BTS up to 1.9x, key size reduced by up to 65%.

• Parameter w/ many small scale factors → accelerates well!

Parameter N log PQ # factors Mult (ms) Boot (s) Key size (MB)

HEaaN

[Cry22]
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780 13 57.28 (1.8x) 7.6 (1.9x) 44.04 (62% ↓)
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426 8 16.2 (1.8x) 2.74 (1.9x) 16.52 (65% ↓)

216
1598 46 884.8 102.10 144.70

1522 25 428.1 (2.1x) 56.41 (1.8x) 109.05 (25% ↓)

[Cry22] CryptoLab, HEaaN library, 2022.
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[BCKS24] Youngjin Bae et. al., Bootstrapping bits with CKKS, Eurocrypt 2024. 
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APPLICATION TO HOMOMORPHIC COMPARISON [CKK20]

• 𝚫-Changeability: Decoupling allows changing Δ freely even during 
computation!

• Application?

• Adaptive Precision Computation in Plain World allows better 
latency/memory:

• ML training: FP16 ⇔ FP32

• Iterative solvers: FP8 → FP16 → FP32

• In Encrypted World, Grafting allows changing precision by changing 𝚫
• E.g., Iterative solver with 𝚫0 ≪ 𝚫1 ≪ 𝚫2

• For each 𝑥𝑖+1 = 𝑓(𝑥𝑖), we can use fine-tuned 𝚫𝑖

• Mod consumption: 3Δ2 ⋅ 𝑑𝑒𝑝𝑡ℎ𝑓  → (Δ0 + Δ1 + Δ2) ⋅ 𝑑𝑒𝑝𝑡ℎ𝑓

[CKK20] Jung Hee Cheon et. al., Efficient homomorphic comparison methods with optimal complexity, Asiacrypt 2020. 
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APPLICATION TO HOMOMORPHIC COMPARISON [CKK20]

• Homomorphic Comparison [CKK20] use iterative method: 

• Evaluate 𝑓𝑘 ∘ 𝑔ℓ: 𝐼𝜖 → 𝐼1−2−𝛼, iteratively narrowing the interval.

• 𝐼𝜖 ≔ −1, −𝜖 ∪ 𝜖, 1

• 𝑓 and 𝑔: deg-7 polynomials

[CKK20] Jung Hee Cheon et. al., Efficient homomorphic comparison methods with optimal complexity, Asiacrypt 2020. 
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Comparison Function 𝑓(2) ∘ 𝑔(4) 𝑓(2) ∘ 𝑔(8)

Methods Original Changing 𝛥  (28, 30, 42 bits) Original Changing 𝛥 (31, 42 bits)

Consumed 

Modulus (bit)

(42 × 3) × 6

= 756

(28 × 3) × 4 + (30 × 3) 

+ (42 × 3) = 552 (27% ↓)
(42 × 3) × 10 

= 1260

(31 × 3) × 9 + (42 × 3) 

= 963 (24% ↓)

Precision (bit) 23.1 23.1 23.5 23.3

⌘ Bit-precision := − log2 max error  from 100 iterations
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SUMMARY

• Grafting redesigns modulus usage in RNS-CKKS

• Enable arbitrary bit-lengths Rescale,

• No additional key-switching keys required.

⇒ Grafting improves RNS-CKKS as:

1. Machine word-size RNS Modulus

• Up to 2.01x faster multiplication and bootstrapping.

• Up to 62% reduction in ciphertext/key-switching key size.

2. Flexible Scale factor

• Scale adjustable independently of the modulus.

• Modulus reduction from freely adjustable scale factor in [CKK20].
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SUMMARY

• Grafting redesigns modulus usage in RNS-CKKS

• Enable arbitrary bit-lengths Rescale,

• No additional key-switching keys required.

⇒ Grafting improves RNS-CKKS:

1. Performance from machine word-size RNS moduli

• Up to 2.1x faster multiplication and 1.9x faster bootstrapping.

• Up to 62% reduction in ciphertext/key-switching key size.

2. Flexibility from decoupling

• Scale/precision adjustable independently of ciphertext modulus.

• Modulus saving for iterative methods, e.g., homomorphic comparison. 



EPRINT: 2024/1014

THANK YOU!
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