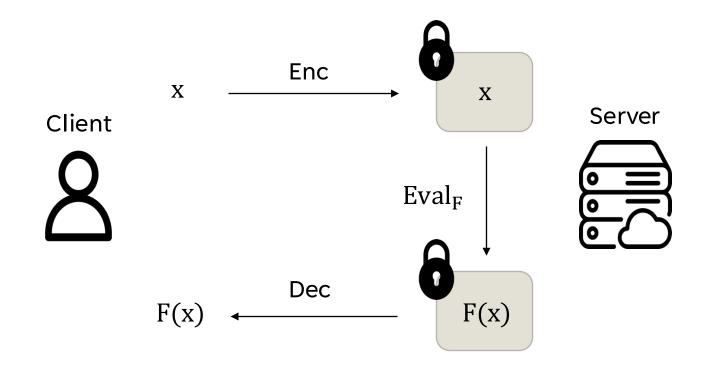
GRAFTING: DECOUPLED SCALE FACTORS AND MODULUS IN RNS-CKKS

Jung Hee Cheon^{1,2}, <u>Hyeongmin Choe</u>², <u>Minsik Kang</u>¹, Jaehyung Kim³ Seonghak Kim², Johannes Mono^{2,4}, Taeyeong Noh²

FULLY HOMOMORPHIC ENCRYPTION (FHE)



- FHE enables computations on encrypted data without decryption.
- Provides efficient privacy-preserving computation.
- CKKS supports approximate computations on real/complex numbers.

- CKKS encodes $\vec{z} \in \mathbb{C}^{N/2}$ with scale factor Δ as:
 - Plaintext: $\Delta m = [\Delta \cdot DFT^{-1}(\vec{z})] \in R_Q = \mathbb{Z}_Q[X]/(X^N + 1).$

- CKKS encodes $\vec{z} \in \mathbb{C}^{N/2}$ with scale factor Δ as:
 - Plaintext: $\Delta m = [\Delta \cdot DFT^{-1}(\vec{z})] \in R_O = \mathbb{Z}_O[X]/(X^N + 1)$.
- CKKS Ciphertext: a pair over $R_Q=\mathbb{Z}_Q[X]/(X^N+1)$ $ct(m)=(a,b)\in R_Q^2\colon \ a\cdot s+b=\Delta m+e\ (mod\ Q),$ where s: secret, e: error, $\Delta m\ll Q$.

- CKKS encodes $\vec{z} \in \mathbb{C}^{N/2}$ with scale factor Δ as:
 - Plaintext: $\Delta m = [\Delta \cdot DFT^{-1}(\vec{z})] \in R_Q = \mathbb{Z}_Q[X]/(X^N + 1).$
- CKKS Ciphertext: a pair over $R_Q=\mathbb{Z}_Q[X]/(X^N+1)$ $ct(m)=(a,b)\in R_Q^2\colon \ a\cdot s+b=\Delta m+e\ (mod\ Q),$ where s: secret, e: error, $\Delta m\ll Q$.
- For modulus $Q=\prod_{i=0}^\ell q_i$, the CRT: $\mathbb{Z}_Q\cong\prod_{i=0}^\ell \mathbb{Z}_{q_i}$ allows $R_Q\cong R_{q_0}\times R_{q_1}\times\cdots\times R_{q_\ell}$
 - Computation cost grows linearly with level ℓ .

- CKKS encodes $\vec{z} \in \mathbb{C}^{N/2}$ with scale factor Δ as:
 - Plaintext: $\Delta m = [\Delta \cdot DFT^{-1}(\vec{z})] \in R_Q = \mathbb{Z}_Q[X]/(X^N + 1).$
- CKKS Ciphertext: a pair over $R_Q=\mathbb{Z}_Q[X]/(X^N+1)$ $ct(m)=(a,b)\in R_Q^2\colon \ a\cdot s+b=\Delta m+e\ (mod\ Q),$ where s: secret, e: error, $\Delta m\ll Q$.
- For modulus $Q=\prod_{i=0}^\ell q_i$, the CRT: $\mathbb{Z}_Q\cong\prod_{i=0}^\ell \mathbb{Z}_{q_i}$ allows $R_Q\cong R_{q_0}\times R_{q_1}\times\cdots\times R_{q_\ell}$
 - Computation cost grows linearly with level ℓ .
 - \Rightarrow Filling Q with machine's word-size primes is the most efficient!

For $ct(m_i) = (a_i, b_i)$ (i = 1, 2), CKKS multiplication proceeds as follows:

For $ct(m_i) = (a_i, b_i)$ (i = 1, 2), CKKS multiplication proceeds as follows:

Tensor & Relinearization:

$$(d_0, d_1) \in R_Q^2$$
: $d_0 + d_1 s \approx (b_1 + a_1 s)(b_2 + a_2 s)$
 $\approx \Delta^2 m_1 m_2 + \Delta(m_1 e_2 + m_2 e_1) + e_{relin} \pmod{Q}$.

For $ct(m_i) = (a_i, b_i)$ (i = 1, 2), CKKS multiplication proceeds as follows:

Tensor & Relinearization:

$$(d_0, d_1) \in R_Q^2: d_0 + d_1 s \approx (b_1 + a_1 s)(b_2 + a_2 s)$$
$$\approx \Delta^2 m_1 m_2 + \Delta(m_1 e_2 + m_2 e_1) + e_{relin} \pmod{Q}.$$

Rescale:

$$(c_0,c_1) = \left(\left\lfloor \frac{d_0}{q_\ell} \right\rfloor, \left\lfloor \frac{d_1}{q_\ell} \right\rfloor \right) \in R^2_{Q/q_\ell}, \quad c_0 + c_1 s \approx \frac{\Delta^2}{q_\ell} m_1 m_2 + \frac{\Delta}{q_\ell} \left(m_1 e_2 + m_2 e_1 \right) \ \left(mod \frac{Q}{q_\ell} \right).$$

For $ct(m_i) = (a_i, b_i)$ (i = 1, 2), CKKS multiplication proceeds as follows:

• Tensor & Relinearization:

$$(d_0, d_1) \in R_Q^2: d_0 + d_1 s \approx (b_1 + a_1 s)(b_2 + a_2 s)$$

$$\approx \Delta^2 m_1 m_2 + \Delta(m_1 e_2 + m_2 e_1) + e_{relin} \pmod{Q}.$$

Rescale:

$$(c_0,c_1) = \left(\left\lfloor \frac{d_0}{q_\ell} \right\rfloor, \left\lfloor \frac{d_1}{q_\ell} \right\rfloor \right) \in R^2_{Q/q_\ell}, \quad c_0 + c_1 s \approx \frac{\Delta^2}{q_\ell} m_1 m_2 + \frac{\Delta}{q_\ell} \left(m_1 e_2 + m_2 e_1 \right) \ \left(mod \frac{Q}{q_\ell} \right).$$

 \therefore Hence, each modulus should match the scale factor Δ :

 $q_1 \approx \cdots \approx q_\ell \approx \Delta$ for multiplication levels ℓ .

• Modulus chain in RNS-CKKS is constructed as follows:

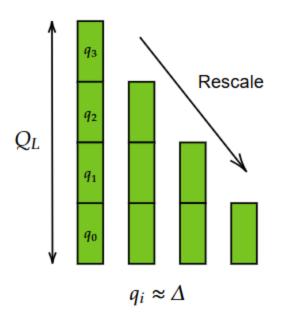
$$Q_0 \mid Q_1 \mid \cdots \mid Q_L$$
,

• $Q_{\ell} = q_0 q_1 \cdots q_{\ell} \approx \Delta^{\ell} \cdot q_0$ for each level ℓ .

• Modulus chain in RNS-CKKS is constructed as follows:

$$Q_0 \mid Q_1 \mid \cdots \mid Q_L$$
,

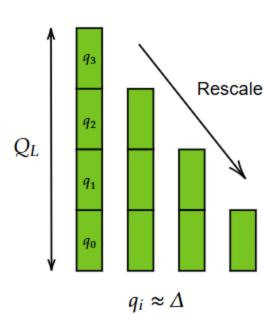
• $Q_{\ell} = q_0 q_1 \cdots q_{\ell} \approx \Delta^{\ell} \cdot q_0$ for each level ℓ .



Modulus chain in RNS-CKKS is constructed as follows:

$$Q_0 \mid Q_1 \mid \cdots \mid Q_L$$
,

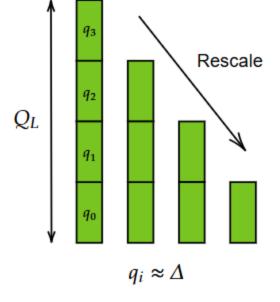
- $Q_{\ell} = q_0 q_1 \cdots q_{\ell} \approx \Delta^{\ell} \cdot q_0$ for each level ℓ .
- ullet Key-switching keys are positioned at modulus PQ_L
 - The auxiliary modulus P allows key-switching at any level ℓ .
 - The main property enabling this is:



Modulus chain in RNS-CKKS is constructed as follows:

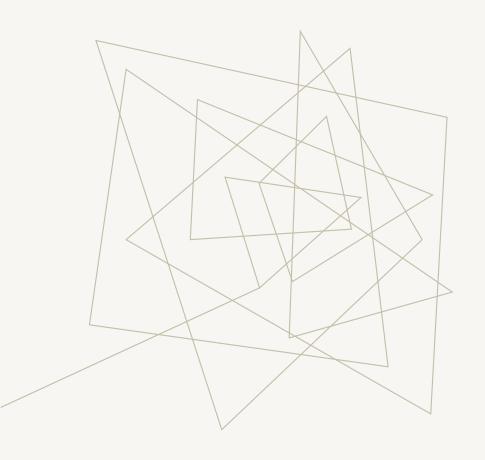
$$Q_0 \mid Q_1 \mid \cdots \mid Q_L$$
,

- $Q_{\ell} = q_0 q_1 \cdots q_{\ell} \approx \Delta^{\ell} \cdot q_0$ for each level ℓ .
- ullet Key-switching keys are positioned at modulus PQ_L
 - The auxiliary modulus P allows key-switching at any level ℓ .
 - The main property enabling this is:



$$Q_{\ell} \mid Q_L$$

Why don't we set $Q_{\ell} \mid Q_L$ — not necessarily $Q_{\ell} \mid Q_{\ell+1}$, while each Q_{ℓ} is filled up with machine's word-size primes?



GRAFTING: A NOVEL MODULUS MANAGEMENT SYSTEM

- We set the top-modulus as $Q_{top} = q_0 q_1 \cdots q_{L-1} \cdot r_{top}$.
 - Each q_i is machine word-size prime.
 - r_{top} is called a *sprout*, reusable modulus factor of Q_{top} .

- We set the top-modulus as $Q_{top} = q_0 q_1 \cdots q_{L-1} \cdot r_{top}$.
 - Each q_i is machine word-size prime.
 - r_{top} is called a *sprout*, reusable modulus factor of Q_{top} .
- Every possible modulus is of the form $Q = q_0 q_1 \cdots q_\ell \cdot r$.
 - Here, $\ell < L$ and $r \mid r_{top}$ to ensure $Q \mid Q_{top}$.

- We set the top-modulus as $Q_{top} = q_0 q_1 \cdots q_{L-1} \cdot r_{top}$.
 - Each q_i is machine word-size prime.
 - r_{top} is called a *sprout*, reusable modulus factor of Q_{top} .
- Every possible modulus is of the form $Q = q_0 q_1 \cdots q_\ell \cdot r$.
 - Here, $\ell < L$ and $r \mid r_{top}$ to ensure $Q \mid Q_{top}$.
- Rescale from modulus Q to Q'(< Q) proceeds as:

$$\operatorname{Rescale}_{Q \mapsto Q'} \left(ct = (a, b) \in R_Q^2 \right) = \left(\left\lfloor \frac{Q'}{Q} \cdot a \right\rfloor, \left\lfloor \frac{Q'}{Q} \cdot b \right\rfloor \right) \in R_{Q'}^2$$

- We set the top-modulus as $Q_{top} = q_0 q_1 \cdots q_{L-1} \cdot r_{top}$.
 - Each q_i is machine word-size prime.
 - r_{top} is called a *sprout*, reusable modulus factor of Q_{top} .
- Every possible modulus is of the form $Q = q_0 q_1 \cdots q_\ell \cdot r$.
 - Here, $\ell < L$ and $r \mid r_{top}$ to ensure $Q \mid Q_{top}$.
- Rescale from modulus Q to Q'(< Q) proceeds as:

$$\operatorname{Rescale}_{Q \mapsto Q'} \left(ct = (a, b) \in R_Q^2 \right) = \left(\left\lfloor \frac{Q'}{Q} \cdot a \right\rfloor, \left\lfloor \frac{Q'}{Q} \cdot b \right\rfloor \right) \in R_{Q'}^2$$

 \Rightarrow We call it *Rational Rescale*, a generalized Rescale in RNS-CKKS.

• To enable Rational Rescale with arbitrary bit-lengths,

 $Q=q_0q_1\cdots q_\ell\cdot r$ should represent integers of any bit-lengths.

• To enable Rational Rescale with arbitrary bit-lengths,

 $Q=q_0q_1\cdots q_\ell\cdot r$ should represent integers of any bit-lengths.

• Sprout r_{top} should satisfy the following:

For word-size ω , $0 \le \forall \delta < \omega$, $\exists r \mid r_{top}$ such that $r \approx 2^{\delta}$.

• To enable Rational Rescale with arbitrary bit-lengths,

 $Q = q_0 q_1 \cdots q_\ell \cdot r$ should represent integers of any bit-lengths.

• Sprout r_{top} should satisfy the following:

For word-size ω , $0 \le \forall \delta < \omega$, $\exists r \mid r_{top}$ such that $r \approx 2^{\delta}$. \Rightarrow We call such r_{top} a universal sprout.

• To enable Rational Rescale with arbitrary bit-lengths,

 $Q = q_0 q_1 \cdots q_\ell \cdot r$ should represent integers of any bit-lengths.

• Sprout r_{top} should satisfy the following:

For word-size ω , $0 \le \forall \delta < \omega$, $\exists r \mid r_{top}$ such that $r \approx 2^{\delta}$. \Rightarrow We call such r_{top} a universal sprout.

- Example (for $\omega = 60$):
 - $r_{top} = 2^{15} \cdot r_1 \cdot r_2$ with r_1 16-bit and r_2 29-bit NTT primes:

To enable Rational Rescale with arbitrary bit-lengths,

$$Q = q_0 q_1 \cdots q_\ell \cdot r$$
 should represent integers of any bit-lengths.

• Sprout r_{top} should satisfy the following:

For word-size
$$\omega$$
, $0 \le \forall \delta < \omega$, $\exists r \mid r_{top}$ such that $r \approx 2^{\delta}$. \Rightarrow We call such r_{top} a universal sprout.

- Example (for $\omega = 60$):
 - $r_{top} = 2^{15} \cdot r_1 \cdot r_2$ with r_1 16-bit and r_2 29-bit NTT primes:

	$0 \le \log_2 r < 16$	$16 \le \log_2 r < 29$	$29 \le \log_2 r < 44$	$44 \le \log_2 r < 60$
r	$2^0, 2^1, \dots, 2^{15}$	$r_1, 2r_1, \dots, 2^{15}r_1$	$r_2, 2r_2, \dots, 2^{15}r_2$	$r_1r_2, 2r_1r_2, \dots, 2^{15}r_1r_2$

• To enable Rational Rescale with arbitrary bit-lengths,

 $Q = q_0 q_1 \cdots q_\ell \cdot r$ should represent integers of any bit-lengths.

• Sprout r_{top} should satisfy the following:

For word-size ω , $0 \le \forall \delta < \omega$, $\exists r \mid r_{top}$ such that $r \approx 2^{\delta}$. \Rightarrow We call such r_{top} a universal sprout.

- Example (for $\omega = 60$):
 - $r_{top} = 2^{15} \cdot r_1 \cdot r_2$ with r_1 16-bit and r_2 29-bit NTT primes:

	$0 \le \log_2 r < 16$	$16 \le \log_2 r < 29$	$29 \le \log_2 r < 44$	$44 \le \log_2 r < 60$
r	$2^0, 2^1, \dots, 2^{15}$	$r_1, 2r_1, \dots, 2^{15}r_1$	$r_2, 2r_2, \dots, 2^{15}r_2$	$r_1 r_2$, $2r_1 r_2$,, $2^{15} r_1 r_2$

1) Embed $\mathbb{Z}_{2^{15}}\hookrightarrow \mathbb{Z}_p$ and 2) composite NTT with $\mathbb{Z}_{r_1}\times \mathbb{Z}_{r_2}\cong \mathbb{Z}_{r_1r_2}$

To enable Rational Rescale with arbitrary bit-lengths,

 $Q = q_0 q_1 \cdots q_\ell \cdot r$ should represent integers of any bit-lengths.

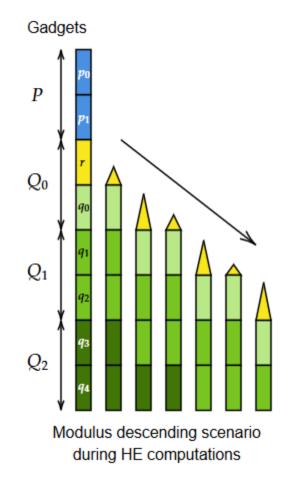
• Sprout r_{top} should satisfy the following:

For word-size ω , $0 \le \forall \delta < \omega$, $\exists r \mid r_{top}$ such that $r \approx 2^{\delta}$. \Rightarrow We call such r_{top} a universal sprout.

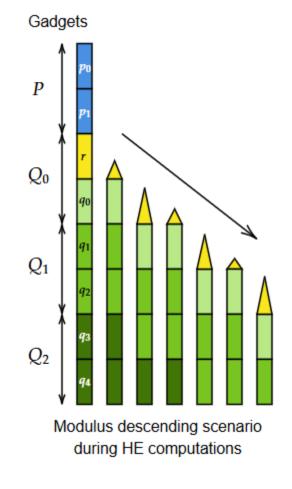
- Example (for $\omega = 60$):
 - $r_{top} = 2^{15} \cdot r_1 \cdot r_2$ with r_1 16-bit and r_2 29-bit NTT primes:

	$0 \le \log_2 r < 16$	$16 \le \log_2 r < 29$	$29 \le \log_2 r < 44$	$44 \le \log_2 r < 60$
r	$2^0, 2^1, \dots, 2^{15}$	$r_1, 2r_1, \dots, 2^{15}r_1$	$r_2, 2r_2, \dots, 2^{15}r_2$	$r_1 r_2$, $2r_1 r_2$,, $2^{15} r_1 r_2$

1) Embed $\mathbb{Z}_{2^{15}} \hookrightarrow \mathbb{Z}_p$ and 2) composite NTT with $\mathbb{Z}_{r_1} \times \mathbb{Z}_{r_2} \cong \mathbb{Z}_{r_1 r_2}$ \Rightarrow Universal sprout, within 2 machine words.



When rescaling $Q = q_0 q_1 \cdots q_\ell \cdot r$ by q to obtain $Q' \approx Q/q$,

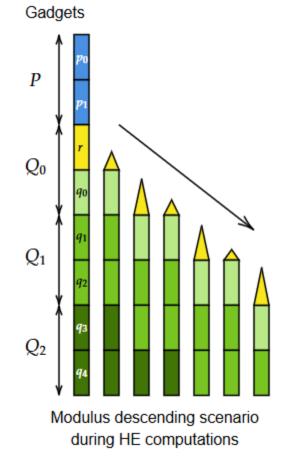


When rescaling $Q = q_0 q_1 \cdots q_\ell \cdot r$ by q to obtain $Q' \approx Q/q$,

• If $q \leq r$,

$$Q' \approx q_0 q_1 \cdots q_\ell \cdot (r/q).$$

• Choose $r' \mid r_{top}$ such that $r' \approx r/q$.



When rescaling $Q = q_0 q_1 \cdots q_\ell \cdot r$ by q to obtain $Q' \approx Q/q$,

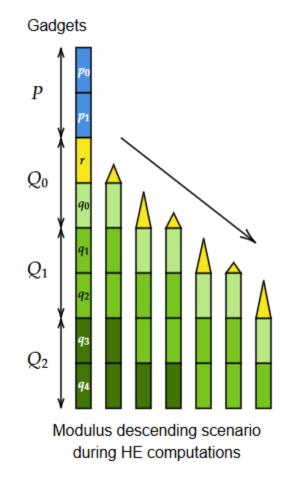
• If $q \leq r$,

$$Q' \approx q_0 q_1 \cdots q_\ell \cdot (r/q).$$

- Choose $r' \mid r_{top}$ such that $r' \approx r/q$.
- If q > r,

$$Q' \approx q_0 q_1 \cdots q_{\ell-1} \cdot (q_{\ell} r/q).$$

- Choose $r' \mid r_{top}$ such that $r' \approx (2^{\omega}r)/q$.
- ullet Some factors of r_{top} are resurrected during Rational Rescale.



When rescaling $Q = q_0 q_1 \cdots q_\ell \cdot r$ by q to obtain $Q' \approx Q/q$,

• If $q \leq r$,

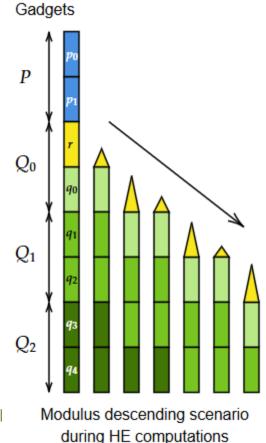
$$Q' \approx q_0 q_1 \cdots q_\ell \cdot (r/q).$$

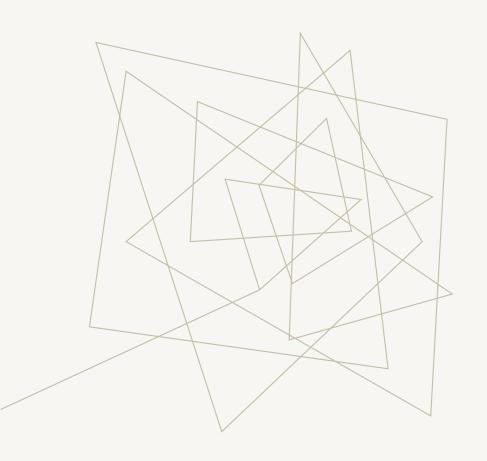
- Choose $r' \mid r_{top}$ such that $r' \approx r/q$.
- If q > r,

$$Q' \approx q_0 q_1 \cdots q_{\ell-1} \cdot (q_{\ell} r/q).$$

- Choose $r' \mid r_{top}$ such that $r' \approx (2^{\omega}r)/q$.
- Some factors of r_{top} are resurrected during Rational Rescale.

⇒ We call this process Modulus Resurrection





APPLICATION OF GRAFTING & EXPERIMENTAL RESULTS

WHEN APPLIED TO STANDARD CKKS / BIT-CKKS

Parameter	N	log PQ	# factors	Mult (ms)	Boot (s)	Key size (MB)
	2 ¹⁵	777	22	102.20	14.5	115.34
HEaaN		780	13	57.28 (1.8x)	7.6 (1.9x)	44.04 (62 % ↓)
[Cry22]	2 ¹⁶	1555	30	329.38	37.0	157.29
			27	247.45 (1.3x)	35.5 (1.1x)	146.80 (7%↓)
Sec. Guide. [BCC+24]	2 ¹⁶	1734	35	360.84	86.5	220.20
			29	179.87 (2.0x)	71.7 (1.2x)	157.29 (29 % ↓)

- Mult up to 2.0x, BTS up to 1.9x, key size reduced by up to 62%.
 - Parameter w/ many small scale factors → accelerates well!

[Cry22] CryptoLab, HEaaN library, 2022.

[BCC+24] Jean-Philippe Bossuat et. al., Security guidelines for implementing homomorphic encryption, CIC 2025.

[BCKS24] Youngjin Bae et. al., Bootstrapping bits with CKKS, Eurocrypt 2024.

WHEN APPLIED TO STANDARD CKKS / BIT-CKKS

Parameter	N	log PQ	# factors	Mult (ms)	Boot (s)	Key size (MB)
	2 ¹⁵	777	22	102.20	14.5	115.34
HEaaN		780	13	57.28 (1.8x)	7.6 (1.9x)	44.04 (62%↓)
[Cry22]	2 ¹⁶	1555	30	329.38	37.0	157.29
			27	247.45 (1.3x)	35.5 (1.1x)	146.80 (7%↓)
Sec. Guide.	2 ¹⁶	⁶ 1734	35	360.84	86.5	220.20
[BCC+24]			29	179.87 (2.0x)	71.7 (1.2x)	157.29 (29% ↓)
	2 ¹⁴	424	14	16.1	5.18	47.71
Bit-CKKS		426	8	16.2 (1.8x)	2.74 (1.9x)	16.52 (65 % ↓)
[BCKS24]	2 ¹⁶	1598	46	884.8	102.10	144.70
		1522	25	428.1 (2.1 x)	56.41 (1.8x)	109.05 (25 % ↓)

- Mult up to 2.1x, BTS up to 1.9x, key size reduced by up to 65%.
 - Parameter w/ many small scale factors → accelerates well!

[Cry22]

CryptoLab, HEaaN library, 2022.

[BCC+24] Jean-Philippe Bossuat et. al., Security guidelines for implementing homomorphic encryption, CIC 2025.

[BCKS24] Youngjin Bae et. al., Bootstrapping bits with CKKS, Eurocrypt 2024.

• Δ -Changeability: Decoupling allows changing Δ freely even during computation!

• Δ -Changeability: Decoupling allows changing Δ freely even during computation!

Application?

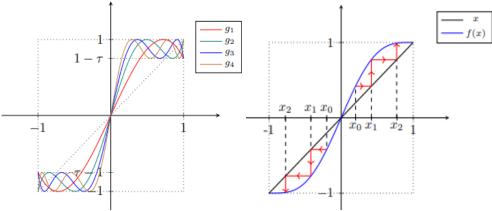
- Adaptive Precision Computation in Plain World allows better latency/memory:
 - ML training: FP16 ⇔ FP32
 - Iterative solvers: FP8 \rightarrow FP16 \rightarrow FP32

• Δ -Changeability: Decoupling allows changing Δ freely even during computation!

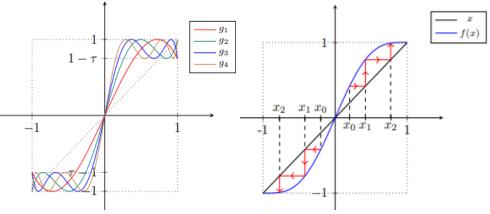
Application?

- Adaptive Precision Computation in Plain World allows better latency/memory:
 - ML training: FP16 ⇔ FP32
 - Iterative solvers: FP8 \rightarrow FP16 \rightarrow FP32
- In Encrypted World?
 - Grafting now allows changing **precision** by changing Δ

- Homomorphic Comparison [CKK20] use iterative method:
 - Evaluate $f^k \circ g^\ell : I_\epsilon \to I_{1-2^{-\alpha}}$, iteratively narrowing the interval.
 - $I_{\epsilon} \coloneqq [-1, -\epsilon] \cup [\epsilon, 1]$
 - f and g: deg-7 polynomials



- Homomorphic Comparison [CKK20] use iterative method:
 - Evaluate $f^k \circ g^\ell : I_\epsilon \to I_{1-2^{-\alpha}}$, iteratively narrowing the interval.
 - $I_{\epsilon} \coloneqq [-1, -\epsilon] \cup [\epsilon, 1]$
 - f and g: deg-7 polynomials
 - \rightarrow We can save modulus by using smaller Δ for early iterations!

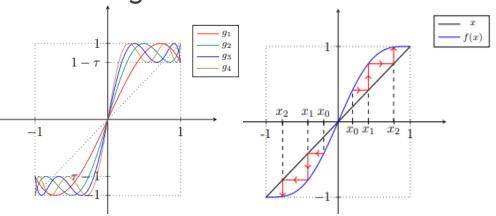


- Homomorphic Comparison [CKK20] use iterative method:
 - Evaluate $f^k \circ g^\ell : I_\epsilon \to I_{1-2^{-\alpha}}$, iteratively narrowing the interval.
 - $I_{\epsilon} \coloneqq [-1, -\epsilon] \cup [\epsilon, 1]$
 - f and g: deg-7 polynomials
 - \rightarrow We can save modulus by using smaller Δ for early iterations!

$\begin{array}{c} 1 \\ 1 - \tau \end{array}$	$ \begin{array}{cccc} & g_1 \\ & g_2 \\ & g_3 \\ & g_4 \end{array} $	$x_2 x_1 \ x_0$	$ \begin{array}{c} $
		1	

Comparison Function		$f^{(2)} \circ g^{(4)}$
Methods	Original	Changing △ (28, 30, 42 bits)
Consumed Modulus (bit)	(42 × 3) × 6 = 756	$(28 \times 3) \times 4 + (30 \times 3)$ + $(42 \times 3) = 552 (27\% \downarrow)$
Precision (bit)	23.1	23.1

- Homomorphic Comparison [CKK20] use iterative method:
 - Evaluate $f^k \circ g^\ell : I_\epsilon \to I_{1-2^{-\alpha}}$, iteratively narrowing the interval.
 - $I_{\epsilon} \coloneqq [-1, -\epsilon] \cup [\epsilon, 1]$
 - f and g: deg-7 polynomials
 - \rightarrow We can save modulus by using smaller Δ for early iterations!



Comparison Function	$f^{(2)} \circ g^{(4)}$		$f^{(2)}\circ g^{(8)}$		
Methods	Original	Changing △ (28, 30, 42 bits)	Original	Changing ∆ (31, 42 bits)	
Consumed Modulus (bit)	(42 × 3) × 6 = 756	$(28 \times 3) \times 4 + (30 \times 3)$ + $(42 \times 3) = 552 (27\% \downarrow)$	(42 × 3) × 10 = 1260	(31 × 3) × 9 + (42 × 3) = 963 (24 % ↓)	
Precision (bit)	23.1	23.1	23.5	23.3	

 \mathcal{H} Bit-precision := $-\log_2|\max \text{error}|$ from 100 iterations

SUMMARY

- Grafting redesigns modulus usage in RNS-CKKS
 - Enable arbitrary bit-lengths Rescale,
 - No additional key-switching keys required.

SUMMARY

- Grafting redesigns modulus usage in RNS-CKKS
 - Enable arbitrary bit-lengths Rescale,
 - No additional key-switching keys required.

⇒ Grafting improves RNS-CKKS:

- 1. Performance from machine word-size RNS moduli
 - Up to 2.1x faster multiplication and 1.9x faster bootstrapping.
 - Up to 62% reduction in ciphertext/key-switching key size.

SUMMARY

- Grafting redesigns modulus usage in RNS-CKKS
 - Enable arbitrary bit-lengths Rescale,
 - No additional key-switching keys required.

⇒ Grafting improves RNS-CKKS:

- 1. Performance from machine word-size RNS moduli
 - Up to 2.1x faster multiplication and 1.9x faster bootstrapping.
 - Up to 62% reduction in ciphertext/key-switching key size.
- 2. Flexibility from decoupling
 - Scale/precision adjustable independently of ciphertext modulus.
 - Modulus saving for iterative methods, e.g., homomorphic comparison.

EPRINT: 2024/1014

THANK YOU!